Neutron detection and application with a novel 3D-projection scintillator tracker in the future long-baseline neutrino oscillation experiments

Autor: S. Gwon, P. Granger, G. Yang, S. Bolognesi, T. Cai, M. Danilov, A. Delbart, A. De Roeck, S. Dolan, G. Eurin, R. F. Razakamiandra, S. Fedotov, G. Fiorentini Aguirre, R. Flight, R. Gran, C. Ha, C. K. Jung, K. Y. Jung, S. Kettell, M. Khabibullin, A. Khotjantsev, M. Kordosky, Y. Kudenko, T. Kutter, J. Maneira, S. Manly, D. A. Martinez Caicedo, C. Mauger, K. McFarland, C. McGrew, A. Mefodev, O. Mineev, D. Naples, A. Olivier, V. Paolone, S. Prasad, C. Riccio, J. Rodriguez Rondon, D. Sgalaberna, A. Sitraka, K. Siyeon, N. Skrobova, H. Su, S. Suvorov, A. Teklu, M. Tzanov, E. Valencia, K. Wood, E. Worcester, N. Yershov
Přispěvatelé: Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, HEP, INSPIRE
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Physics - Instrumentation and Detectors
[PHYS.HEXP] Physics [physics]/High Energy Physics - Experiment [hep-ex]
kinetic
FOS: Physical sciences
interaction
final state
meson
time-of-flight
charged current
High Energy Physics - Experiment
High Energy Physics - Experiment (hep-ex)
neutrino
High Energy Physics - Phenomenology (hep-ph)
optical
[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]
tracking detector
[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]
Detectors and Experimental Techniques
physics.ins-det
scintillation counter
Particle Physics - Phenomenology
hep-ex
hep-ph
Instrumentation and Detectors (physics.ins-det)
oscillation
current
[PHYS.HPHE] Physics [physics]/High Energy Physics - Phenomenology [hep-ph]
flux
High Energy Physics - Phenomenology
[PHYS.PHYS.PHYS-INS-DET] Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]
kinematics
[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]
Particle Physics - Experiment
energy
Zdroj: Physical Review
Phys.Rev.D
Phys.Rev.D, 2023, 107 (3), pp.032012. ⟨10.1103/PhysRevD.107.032012⟩
Popis: Neutrino oscillation experiments require a precise measurement of the neutrino energy. However, the kinematic detection of the final-state neutron in the neutrino interaction is missing in current neutrino oscillation experiments. The missing neutron kinematic detection results in a smaller detected neutrino energy than the true neutrino energy. A novel 3D-projection scintillator tracker, which consists of roughly ten million active cubes covered with an optical reflector, is capable of measuring the neutron kinetic energy and direction on an event-by-event basis using the time-of-flight technique thanks to the fast timing, fine granularity, and high light yield. The ν¯μ interactions tend to produce neutrons in the final state. By measuring the neutron kinetic energy, the ν¯μ energy can be reconstructed better, allowing a tighter incoming neutrino flux constraint. This article shows the detector’s ability to reconstruct neutron kinetic energy and the ν¯μ flux constraint achieved by selecting the charged-current interactions without mesons or protons in the final state. Neutrino oscillation experiments require a precise measurement of the neutrino energy. However, the kinematic detection of the final-state neutron in the neutrino interaction is missing in current neutrino oscillation experiments. The missing neutron kinematic detection results in a feed-down of the detected neutrino energy compared to the true neutrino energy. A novel 3D\textcolor{black}{-}projection scintillator tracker, which consists of roughly ten million active cubes covered with an optical reflector, is capable of measuring the neutron kinetic energy and direction on an event-by-event basis using the time-of-flight technique thanks to the fast timing, fine granularity, and high light yield. The $\bar{\nu}_{\mu}$ interactions tend to produce neutrons in the final state. By inferring the neutron kinetic energy, the $\bar{\nu}_{\mu}$ energy can be reconstructed better, allowing a tighter incoming neutrino flux constraint. This paper shows the detector's ability to reconstruct neutron kinetic energy and the $\bar{\nu}_{\mu}$ flux constraint achieved by selecting the charged-current interactions without mesons or protons in the final state.
Databáze: OpenAIRE