NUMERICAL SIMULATION OF IMPREGNATION IN POROUS MEDIA BY SELF-ORGANIZED GRADIENT PERCOLATION METHOD

Autor: NGUYEN, Anh Khoa, Blond, Eric, Sayet, Thomas, Batakis, Athanasios, De Bilbao, Emmanuel, Duong, Minh Duc
Přispěvatelé: Mécanique des Matériaux et Procédés (MMP), Laboratoire de Mécanique Gabriel Lamé (LaMé), Université d'Orléans (UO)-Institut National des Sciences Appliquées - Centre Val de Loire (INSA CVL), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université de Tours-Université d'Orléans (UO)-Institut National des Sciences Appliquées - Centre Val de Loire (INSA CVL), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université de Tours, Institut Denis Poisson (IDP), Centre National de la Recherche Scientifique (CNRS)-Université de Tours-Université d'Orléans (UO), Conditions Extrêmes et Matériaux : Haute Température et Irradiation (CEMHTI), Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université d'Orléans (UO), Department of Analysis, Faculty of Mathematics & Computer Science, University of Science, VNU-HCMC, Vietnam, The University of Glasgow and The University of Edinburgh, UK, Université d'Orléans (UO)-Université de Tours-Institut National des Sciences Appliquées - Centre Val de Loire (INSA CVL), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université d'Orléans (UO)-Université de Tours-Institut National des Sciences Appliquées - Centre Val de Loire (INSA CVL), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA), Université d'Orléans (UO)-Université de Tours-Centre National de la Recherche Scientifique (CNRS), Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université de Tours (UT)-Université d'Orléans (UO)-Institut National des Sciences Appliquées - Centre Val de Loire (INSA CVL), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université de Tours (UT), Centre National de la Recherche Scientifique (CNRS)-Université de Tours (UT)-Université d'Orléans (UO)
Jazyk: angličtina
Rok vydání: 2018
Předmět:
Zdroj: 6th Euroupean Conference Computational Mechanics (ECCM 6) and 7th Euroupean Conference Computational Fluid Dynamics (ECCFD 7)
6th Euroupean Conference Computational Mechanics (ECCM 6) and 7th Euroupean Conference Computational Fluid Dynamics (ECCFD 7), The University of Glasgow and The University of Edinburgh, UK, Jun 2018, Glasgow, United Kingdom
Popis: International audience; The aim of this work is to develop a new numerical method to overcome the computational difficulties of numerical simulation of unsaturated impregnation in porous media. The numerical analysis by classical methods (F.E.M, theta-method, …) for this phenomenon require small time-step and space discretization to ensure both convergence and accuracy. Yet this leads to a high computational cost. Moreover, a very small time-step can lead to spurious oscillations that impact the precision of the results. Thus, we propose to use a Self-organized Gradient Percolation (SGP) algorithm to reduce the computational cost and overcome these numerical drawbacks. The (SGP) method is based on gradient percolation theory, relevant to calculation of local saturation. The initialization of this algorithm is driven by an analytic solution of the homogenous diffusion equation, which is a convolution between a Probability Density Function (PDF) and a smoothing function. Thus, we propose to reproduce the evolution of the capillary pressure profiles by the evolution of the standard deviation of the PDF. This algorithm is validated by comparing the results with the capillary pressure profiles and the mass gain curve obtained by finite element simulations and experimental measurements, respectively. The computational time of the proposed algorithm is lower than that of finite element models for one-dimension case. In conclusion, the SGP method permits to reduce the computational cost and does not produce spurious oscillations. The work is still going on for extension in 3D and the first results are promising.
Databáze: OpenAIRE