Impacts of Mechanical Stiffness of Bacteriophage-Loaded Hydrogels on Their Antibacterial Activity
Autor: | Saeid Ekrami, Jérôme F. L. Duval, Grégory Francius, Manon Cervulle, Christophe Gantzer, Xavier Bellanger, Eloïse Clément |
---|---|
Přispěvatelé: | Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement (LCPME), Institut de Chimie du CNRS (INC)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC), Institut Ecologie et Environnement (INEE), Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Terre et Environnement de Lorraine (OTELo), Institut national des sciences de l'Univers (INSU - CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), ANR-14-CE17-0005,MAGENTA,Mécanismes de transport des bactériophages optimisés pour le développement de revêtements antibactériens(2014), Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Terre et Environnement de Lorraine (OTELo), Institut national des sciences de l'Univers (INSU - CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Institut Ecologie et Environnement (INEE), Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS) |
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
Materials science
[SDV]Life Sciences [q-bio] Biomedical Engineering Biocompatible Materials Microbial Sensitivity Tests 02 engineering and technology macromolecular substances complex mixtures Biomaterials Bacteriophage 03 medical and health sciences Materials Testing Escherichia coli medicine Bacteriophages Particle Size ComputingMilieux_MISCELLANEOUS 030304 developmental biology [PHYS]Physics [physics] 0303 health sciences Molecular Structure biology Atomic force microscopy Biochemistry (medical) technology industry and agriculture Stiffness Hydrogels General Chemistry 021001 nanoscience & nanotechnology Antimicrobial biology.organism_classification Anti-Bacterial Agents Chemical engineering Self-healing hydrogels Stress Mechanical medicine.symptom 0210 nano-technology Antibacterial activity |
Zdroj: | ACS Applied Bio Materials ACS Applied Bio Materials, ACS Publications, 2021, 4 (3), pp.2614-2627. ⟨10.1021/acsabm.0c01595⟩ |
ISSN: | 2576-6422 |
DOI: | 10.1021/acsabm.0c01595⟩ |
Popis: | International audience; The elaboration of efficient hydrogel-based materials with antimicrobial properties requires a refined control of defining their physicochemical features, which includes mechanical stiffness, so as to properly mediate their antibacterial activity. In this work, we design hydrogels consisting of polyelectrolyte multilayer films for the loading of T4 and φX174 bacteria-killing viruses, also called bacteriophages. We investigate the antiadhesion and bactericidal performances of this biomaterial against Escherichia coli, with a specific focus on the effects of chemical cross-linking of the hydrogel matrix, which, in turn, mediates the hydrogel stiffness. Depending on the latter and on phage replication features, it is found that the hydrogels loaded with the bacteria-killing viruses make both contact killing (targeted bacteria are those adhered at the hydrogel surface) and release killing (planktonic bacteria are the targets) possible with ca. 20–80% efficiency after only 4 h of incubation at 25 °C as compared to cases where hydrogels are free of viruses. We further demonstrate the lack of dependence of virus diffusion within the hydrogel and of the maximal viral storage capacity on the hydrogel mechanical properties. In addition to the evidenced bacteriolytic activity of the phages loaded in the hydrogels, the antimicrobial property of the phage-loaded materials is shown to be partly controlled by the chemistry of the hydrogel skeleton and, more specifically, by the mobility of the peripheral free polycationic components, known for their ability to weaken and permeabilize membranes of bacteria, the latter then becoming “easier” targets for the viruses |
Databáze: | OpenAIRE |
Externí odkaz: |