Impacts of Mechanical Stiffness of Bacteriophage-Loaded Hydrogels on Their Antibacterial Activity

Autor: Saeid Ekrami, Jérôme F. L. Duval, Grégory Francius, Manon Cervulle, Christophe Gantzer, Xavier Bellanger, Eloïse Clément
Přispěvatelé: Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement (LCPME), Institut de Chimie du CNRS (INC)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC), Institut Ecologie et Environnement (INEE), Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Terre et Environnement de Lorraine (OTELo), Institut national des sciences de l'Univers (INSU - CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), ANR-14-CE17-0005,MAGENTA,Mécanismes de transport des bactériophages optimisés pour le développement de revêtements antibactériens(2014), Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Terre et Environnement de Lorraine (OTELo), Institut national des sciences de l'Univers (INSU - CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Institut Ecologie et Environnement (INEE), Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Materials science
[SDV]Life Sciences [q-bio]
Biomedical Engineering
Biocompatible Materials
Microbial Sensitivity Tests
02 engineering and technology
macromolecular substances
complex mixtures
Biomaterials
Bacteriophage
03 medical and health sciences
Materials Testing
Escherichia coli
medicine
Bacteriophages
Particle Size
ComputingMilieux_MISCELLANEOUS
030304 developmental biology
[PHYS]Physics [physics]
0303 health sciences
Molecular Structure
biology
Atomic force microscopy
Biochemistry (medical)
technology
industry
and agriculture

Stiffness
Hydrogels
General Chemistry
021001 nanoscience & nanotechnology
Antimicrobial
biology.organism_classification
Anti-Bacterial Agents
Chemical engineering
Self-healing hydrogels
Stress
Mechanical

medicine.symptom
0210 nano-technology
Antibacterial activity
Zdroj: ACS Applied Bio Materials
ACS Applied Bio Materials, ACS Publications, 2021, 4 (3), pp.2614-2627. ⟨10.1021/acsabm.0c01595⟩
ISSN: 2576-6422
DOI: 10.1021/acsabm.0c01595⟩
Popis: International audience; The elaboration of efficient hydrogel-based materials with antimicrobial properties requires a refined control of defining their physicochemical features, which includes mechanical stiffness, so as to properly mediate their antibacterial activity. In this work, we design hydrogels consisting of polyelectrolyte multilayer films for the loading of T4 and φX174 bacteria-killing viruses, also called bacteriophages. We investigate the antiadhesion and bactericidal performances of this biomaterial against Escherichia coli, with a specific focus on the effects of chemical cross-linking of the hydrogel matrix, which, in turn, mediates the hydrogel stiffness. Depending on the latter and on phage replication features, it is found that the hydrogels loaded with the bacteria-killing viruses make both contact killing (targeted bacteria are those adhered at the hydrogel surface) and release killing (planktonic bacteria are the targets) possible with ca. 20–80% efficiency after only 4 h of incubation at 25 °C as compared to cases where hydrogels are free of viruses. We further demonstrate the lack of dependence of virus diffusion within the hydrogel and of the maximal viral storage capacity on the hydrogel mechanical properties. In addition to the evidenced bacteriolytic activity of the phages loaded in the hydrogels, the antimicrobial property of the phage-loaded materials is shown to be partly controlled by the chemistry of the hydrogel skeleton and, more specifically, by the mobility of the peripheral free polycationic components, known for their ability to weaken and permeabilize membranes of bacteria, the latter then becoming “easier” targets for the viruses
Databáze: OpenAIRE