Ricci-Curbastro Condition for Maximal Surfaces in the Lorentz-Minkowski Space

Autor: Rosa Maria dos Santos Barreiro Chaves, Barbara Corominas Valério, José Antonio M. Vilhena
Rok vydání: 2016
Předmět:
Zdroj: Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
ISSN: 1420-9012
1422-6383
DOI: 10.1007/s00025-016-0596-x
Popis: Motivated by a classical result due to Ricci-Curbastro that gives necessary and sufficient conditions for a metric to be realizable on a minimal surface in the euclidean space, in this paper we study the same problem for maximal surfaces in the Lorentz-Minkowski space.
Databáze: OpenAIRE