Existence of bounded solutions to some nonlinear degenerate elliptic systems
Autor: | Francesco Leonetti, Pier Vincenzo Petricca |
---|---|
Rok vydání: | 2009 |
Předmět: |
Dirichlet problem
Quarter period Pure mathematics existence bounded solution nonlinear elliptic system degenerate coercivity Applied Mathematics Elliptic function Bounded deformation Bounded operator Elliptic operator Bounded function Elliptic rational functions Discrete Mathematics and Combinatorics Mathematics |
Zdroj: | Discrete & Continuous Dynamical Systems - B. 11:191-203 |
ISSN: | 1553-524X |
DOI: | 10.3934/dcdsb.2009.11.191 |
Popis: | We prove existence of bounded weak solutions $u: \Omega \subset \R^{n} \to \R^{N}$ for the Dirichlet problem -div $( a(x, u(x), Du(x) ) ) = f(x),$ $ x \in \Omega$; $u(x) = 0, $ $ x \in \partial\Omega$ where $\Omega$ is a bounded open set, $a$ is a suitable degenerate elliptic operator and $f$ has enough integrability. |
Databáze: | OpenAIRE |
Externí odkaz: |