Combining spectroscopic and isotopic techniques gives a dynamic view of phosphorus cycling in soil

Autor: Chiara Pistocchi, Emmanuel Frossard, Michael S. Massey, Peter M. Vitousek, Federica Tamburini, Ruben Kretzschmar, Julian Helfenstein, Oliver A. Chadwick, Christian von Sperber
Přispěvatelé: Institute of Agricultural Sciences, Ecole Polytechnique Fédérale de Zurich, Institute of Crop Science and Resource Conservation [Bonn], Rheinische Friedrich-Wilhelms-Universität Bonn, McGill University = Université McGill [Montréal, Canada], Department of Earth and Environmental Sciences, Université Catholique de Louvain = Catholic University of Louvain (UCL), Ecologie fonctionnelle et biogéochimie des sols et des agro-écosystèmes (UMR Eco&Sols), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut de Recherche pour le Développement (IRD)-Institut National de la Recherche Agronomique (INRA)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro), Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro), University of California [Santa Barbara] (UCSB), University of California, Department of Biology, Stanford University, Swiss National Science Foundation (Project number 200021_162422), U.S. Department of Energy, Office of Science, and Office of Basic Energy Sciences under Contract No. DE-AC02-76SF00515
Jazyk: angličtina
Rok vydání: 2018
Předmět:
Zdroj: Nature Communications, 9
Nature Communications, Vol 9, Iss 1, Pp 1-9 (2018)
Nature Communications 9 (2018) 1
Helfenstein, J; Tamburini, F; von Sperber, C; Massey, MS; Pistocchi, C; Chadwick, OA; et al.(2018). Combining spectroscopic and isotopic techniques gives a dynamic view of phosphorus cycling in soil. NATURE COMMUNICATIONS, 9. doi: 10.1038/s41467-018-05731-2. UC Santa Barbara: Retrieved from: http://www.escholarship.org/uc/item/58p5h72f
Nature communications, vol 9, iss 1
Nature Communications
Nature Communications, 9(1)
Nature Communications, Nature Publishing Group, 2018, 9 (1), ⟨10.1038/s41467-018-05731-2⟩
ISSN: 2041-1723
Popis: Current understanding of phosphorus (P) cycling in soils can be enhanced by integrating previously discrete findings concerning P speciation, exchange kinetics, and the underlying biological and geochemical processes. Here, we combine sequential extraction with P K-edge X-ray absorption spectroscopy and isotopic methods (33P and 18O in phosphate) to characterize P cycling on a climatic gradient in Hawaii. We link P pools to P species and estimate the turnover times for commonly considered P pools. Dissolved P turned over in seconds, resin-extractable P in minutes, NaOH-extractable inorganic P in weeks to months, and HCl-extractable P in years to millennia. Furthermore, we show that in arid-zone soils, some primary mineral P remains even after 150 ky of soil development, whereas in humid-zone soils of the same age, all P in all pools has been biologically cycled. The integrative information we provide makes possible a more dynamic, process-oriented conceptual model of P cycling in soils.
Our understanding of phosphorus (P) cycling in soils, a basis for many ecosystem services, has been limited by the complexity of P forms and processes. Here the authors use spectroscopic and isotopic techniques to estimate turnover times of P pools and tease apart biologically-driven and geochemically-driven P fluxes.
Databáze: OpenAIRE