Semiclassical resolvent bounds for compactly supported radial potentials
Autor: | Kiril Datchev, Jeffrey Galkowski, Jacob Shapiro |
---|---|
Rok vydání: | 2021 |
Předmět: | |
DOI: | 10.48550/arxiv.2112.15133 |
Popis: | We employ separation of variables to prove weighted resolvent estimates for the semiclassical Schr\"odinger operator $-h^2 \Delta + V(|x|) - E$ in dimension $n \ge 2$, where $h, \, E > 0$, and $V: [0, \infty) \to \mathbb{R}$ is $L^\infty$ and compactly supported. The weighted resolvent norm grows no faster than $\exp(Ch^{-1})$, while an exterior weighted norm grows $\sim h^{-1}$. We introduce a new method based on the Mellin transform to handle the two-dimensional case. |
Databáze: | OpenAIRE |
Externí odkaz: |