Uniform decay rates for a suspension bridge with locally distributed nonlinear damping
Autor: | Mauricio Sepúlveda Cortés, André D.D. Cavalcanti, Rodrigo Véjar Asem, Zayd Hajjej, Wellington J. Corrêa, Marcelo M. Cavalcanti |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: |
Physics
Computer Networks and Communications Applied Mathematics 010102 general mathematics 74K20 35Q99 35B35 Mechanics Deformation (meteorology) 01 natural sciences Bridge (interpersonal) 010101 applied mathematics Nonlinear system Mathematics - Analysis of PDEs Exponential stability Control and Systems Engineering Signal Processing Evolution equation FOS: Mathematics 0101 mathematics Suspension (vehicle) Analysis of PDEs (math.AP) |
Popis: | We study a nonlocal evolution equation modeling the deformation of a bridge, either a footbridge or a suspension bridge. Contrarily to the previous literature we prove the asymptotic stability of the considered model with a minimum amount of damping which represents less cost of material. The result is also numerically proved. 62 pages, 6 figures. arXiv admin note: text overlap with arXiv:1608.07082 by other authors |
Databáze: | OpenAIRE |
Externí odkaz: |