Influence of a road on a population in an ecological niche facing climate change
Autor: | Henri Berestycki, Luca Rossi, Romain Ducasse |
---|---|
Přispěvatelé: | Centre d'Analyse et de Mathématique sociales (CAMS), École des hautes études en sciences sociales (EHESS)-Centre National de la Recherche Scientifique (CNRS), Institut de Mathématiques de Marseille (I2M), Centre National de la Recherche Scientifique (CNRS)-École Centrale de Marseille (ECM)-Aix Marseille Université (AMU), Dipartimento di Matematica [padova], Universita degli Studi di Padova, Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS), Università degli Studi di Padova = University of Padua (Unipd) |
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: |
35B53
Computer science Population Dynamics Population Niche Climate change generalized principal eigenvalue reaction-diffusion system 92D25 01 natural sciences 010305 fluids & plasmas forced speed 03 medical and health sciences Mathematics - Analysis of PDEs ecological niche KPP equations line with fast diffusion moving environment 0103 physical sciences FOS: Mathematics Econometrics Quantitative Biology::Populations and Evolution [MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] Set (psychology) education gen- eralized principal eigenvalue Ecosystem 030304 developmental biology Ecological niche 0303 health sciences education.field_of_study Extinction Plane (geometry) Applied Mathematics 35B40 eco- logical niche MSC: 35K57 35K40 Agricultural and Biological Sciences (miscellaneous) climate change Modeling and Simulation Line (geometry) Analysis of PDEs (math.AP) |
Popis: | We introduce a model designed to account for the influence of a line with fast diffusion-such as a road or another transport network-on the dynamics of a population in an ecological niche. This model consists of a system of coupled reaction-diffusion equations set on domains with different dimensions (line / plane). We first show that the presence of the line is always deleterious and can even lead the population to extinction. Next, we consider the case where the niche is subject to a displacement, representing the effect of a climate change or of seasonal variation of resources. We find that in such case the presence of the line with fast diffusion can help the population to persist. We also study several qualitative properties of this system. The analysis is based on a notion of generalized principal eigenvalue developed by the authors in [5]. |
Databáze: | OpenAIRE |
Externí odkaz: |