Decentralized nonlinear control for power systems using normal forms and detailed models
Autor: | Bikash C. Pal, Abhinav Kumar Singh |
---|---|
Přispěvatelé: | Engineering & Physical Science Research Council (E, Engineering and Physical Sciences Research Council, Engineering & Physical Science Research Council (EPSRC) |
Jazyk: | angličtina |
Rok vydání: | 2018 |
Předmět: |
H630 Electrical Power
Energy Computer science Control (management) 0906 Electrical And Electronic Engineering Stability (learning theory) Nonlinear control Optimal control Electric power system Control theory H310 Dynamics Benchmark (computing) H631 Electrical Power Generation State (computer science) Transient (oscillation) H660 Control Systems |
Popis: | This paper proposes a decentralized method for nonlinear control of oscillatory dynamics in power systems. The method is applicable for ensuring both transient stability and small-signal stability. The method uses an optimal control law, which has been derived in the general framework of nonlinear control using normal forms. The model used to derive the control law is the detailed subtransient model of synchronous machines, as recommended by the IEEE. Minimal approximations have been made in either the derivation or the application of the control law. The developed method also requires the application of the dynamic state estimation technique. As the employed control and estimation schemes only need local measurements, the method remains completely decentralized. The method has been demonstrated as an effective tool to prevent blackouts by simulating a major disturbance in a benchmark power system model and its subsequent control using the proposed method. |
Databáze: | OpenAIRE |
Externí odkaz: |