A Discrete Mathematical Modeling and Optimal Control of the Rumor Propagation in Online Social Network
Autor: | Soukaina Ben Rhila, Rachid Ghazzali, Amine El Bhih, Mostafa Rachik, Adil El Alami Laaroussi |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
Iterative and incremental development
Mathematical optimization Social network Article Subject business.industry Computer science 02 engineering and technology Computer Science::Social and Information Networks Rumor Optimal control 01 natural sciences 010305 fluids & plasmas Pontryagin's minimum principle Maximum principle Order (exchange) Modeling and Simulation 0103 physical sciences 0202 electrical engineering electronic engineering information engineering QA1-939 020201 artificial intelligence & image processing business Mathematics |
Zdroj: | Discrete Dynamics in Nature and Society, Vol 2020 (2020) |
ISSN: | 1026-0226 |
DOI: | 10.1155/2020/4386476 |
Popis: | In this paper, a new rumor spreading model in social networks has been investigated. We propose a new version primarily based on the cholera model in order to take into account the expert pages specialized in the dissemination of rumors from an existing IRCSS model. In the second part, we recommend an optimal control strategy to fight against the spread of the rumor, and the study aims at characterizing the three optimal controls which minimize the number of spreader users, fake pages, and corresponding costs; theoretically, we have proved the existence of optimal controls, and we have given a characterization of controls in terms of states and adjoint functions based on a discrete version of Pontryagin’s maximum principle. To illustrate the theoretical results obtained, we propose numerical simulations for several scenarios applying the forward-backward sweep method (FBSM) to solve our optimality system in an iterative process. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |