Deep learning enables rapid identification of potent DDR1 kinase inhibitors

Autor: Yan A. Ivanenkov, Alex Zhavoronkov, Mark S. Veselov, Rim Shayakhmetov, Anastasiya V Aladinskaya, Daniil Polykovskiy, Victor A Terentiev, Vladimir A. Aladinskiy, Bogdan A Zagribelnyy, Tao Guo, Artem Zholus, Yury Volkov, Alexander Zhebrak, Lennart H Lee, Li Xing, Lidiya I Minaeva, Richard Soll, Alán Aspuru-Guzik, Alexander Aliper, David Madge, Maksim Kuznetsov, Arip Asadulaev
Rok vydání: 2019
Předmět:
Zdroj: Nature Biotechnology. 37:1038-1040
ISSN: 1546-1696
1087-0156
DOI: 10.1038/s41587-019-0224-x
Popis: We have developed a deep generative model, generative tensorial reinforcement learning (GENTRL), for de novo small-molecule design. GENTRL optimizes synthetic feasibility, novelty, and biological activity. We used GENTRL to discover potent inhibitors of discoidin domain receptor 1 (DDR1), a kinase target implicated in fibrosis and other diseases, in 21 days. Four compounds were active in biochemical assays, and two were validated in cell-based assays. One lead candidate was tested and demonstrated favorable pharmacokinetics in mice.
Databáze: OpenAIRE