Light–Matter Interactions in Cesium Lead Halide Perovskite Nanowire Lasers
Autor: | Jeunghee Park, Jae Kyu Song, Seonghyun Jeong, Jong Woon Lee, Jun Dong Kim, Noh Soo Han, Kidong Park, Dong Myung Jang |
---|---|
Rok vydání: | 2016 |
Předmět: |
Mode volume
Materials science business.industry Inorganic chemistry Nanowire Halide 02 engineering and technology 010402 general chemistry 021001 nanoscience & nanotechnology Laser Polarization (waves) 01 natural sciences 0104 chemical sciences Transverse mode law.invention law Optoelectronics General Materials Science Physical and Theoretical Chemistry 0210 nano-technology business Lasing threshold Perovskite (structure) |
Zdroj: | The Journal of Physical Chemistry Letters. 7:3703-3710 |
ISSN: | 1948-7185 |
DOI: | 10.1021/acs.jpclett.6b01821 |
Popis: | Light-matter interactions in inorganic perovskite nanolasers are investigated using single-crystalline cesium lead halide (CsPbX3, X = Cl, Br, and I) nanowires synthesized by the chemical vapor transport method. The perovskite nanowires exhibit a uniform growth direction, smooth surfaces, straight end facets, and homogeneous composition distributions. Lasing occurs in the perovskite nanowires at low thresholds (3 μJ/cm(2)) with high quality factors (Q = 1200-1400) under ambient atmospheric environments. The wavelengths of the nanowire lasers are tunable by controlling the stoichiometry of the halide, allowing the lasing of the inorganic perovskite nanowires from blue to red. The unusual spacing of the Fabry-Pérot modes suggests strong light-matter interactions in the reduced mode volume of the nanowires, while the polarization of the lasing indicates that the Fabry-Pérot modes belong to the same fundamental transverse mode. The dispersion curve of the exciton-polariton model suggests that the group refractive index of the polariton is significantly enhanced. |
Databáze: | OpenAIRE |
Externí odkaz: |