Convex approximations for two-stage mixed-integer mean-risk recourse models with conditional value-at-risk

Autor: Ward Romeijnders, E. Ruben van Beesten
Přispěvatelé: Research programme OPERA
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Mathematical Programming, 181(2), 473-507. SPRINGER HEIDELBERG
ISSN: 0025-5610
Popis: In traditional two-stage mixed-integer recourse models, the expected value of the total costs is minimized. In order to address risk-averse attitudes of decision makers, we consider a weighted mean-risk objective instead. Conditional value-at-risk is used as our risk measure. Integrality conditions on decision variables make the model non-convex and hence, hard to solve. To tackle this problem, we derive convex approximation models and corresponding error bounds, that depend on the total variations of the density functions of the random right-hand side variables in the model. We show that the error bounds converge to zero if these total variations go to zero. In addition, for the special cases of totally unimodular and simple integer recourse models we derive sharper error bounds.
Databáze: OpenAIRE
Nepřihlášeným uživatelům se plný text nezobrazuje