Combining Speech and Handwriting Modalities for Mathematical Expression Recognition
Autor: | Harold Mouchère, Christian Viard-Gaudin, Simon Petitrenaud, Sofiane Medjkoune |
---|---|
Přispěvatelé: | Laboratoire des Sciences du Numérique de Nantes (LS2N), Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-École Centrale de Nantes (ECN)-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT), Laboratoire d'Informatique de l'Université du Mans (LIUM), Le Mans Université (UM), IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-École Centrale de Nantes (ECN)-Centre National de la Recherche Scientifique (CNRS) |
Jazyk: | angličtina |
Rok vydání: | 2017 |
Předmět: |
Computer Networks and Communications
Intelligent character recognition Computer science Speech recognition Human Factors and Ergonomics Context (language use) 02 engineering and technology computer.software_genre Symbol (chemistry) [INFO.INFO-LG]Computer Science [cs]/Machine Learning [cs.LG] [INFO.INFO-TS]Computer Science [cs]/Signal and Image Processing Artificial Intelligence Handwriting 0202 electrical engineering electronic engineering information engineering Use case ComputingMilieux_MISCELLANEOUS ACM: I.: Computing Methodologies/I.5: PATTERN RECOGNITION Modalities Modality (human–computer interaction) business.industry 020206 networking & telecommunications Computer Science Applications Human-Computer Interaction Control and Systems Engineering Handwriting recognition Signal Processing 020201 artificial intelligence & image processing Artificial intelligence business computer Natural language processing |
Zdroj: | IEEE Transactions on Human-Machine Systems IEEE Transactions on Human-Machine Systems, IEEE, 2017, 47 (2), pp.259-272. ⟨10.1109/THMS.2017.2647850⟩ |
ISSN: | 2168-2291 |
DOI: | 10.1109/THMS.2017.2647850⟩ |
Popis: | In this paper, we open new perspectives for mathematical expression recognition by introducing an original bimodal system. Since handwritten mathematical expression recognition is a very challenging task prone to many ambiguities, we use speech as an additional modality to circumvent limitations that are inherent to the written form. A use case scenario corresponds to lectures given in classrooms where the teacher would write and read aloud any mathematical expressions to allow a better interpretation. In addition to state-of-the-art solutions for recognizing handwriting and speech, we introduce a multilayer architecture for the merger of modalities. Specifically, the Dempster–Shafer theory is used to process the information at the symbol level. This bimodal system is evaluated on real bimodal data, the HAMEX dataset. Large improvements are observed when speech and handwriting are combined when compared to the single handwriting modality. |
Databáze: | OpenAIRE |
Externí odkaz: |