Computation of instant system availability and its applications

Autor: Patrick Kandege, Emmanuel Hagenimana, Song Li-xin
Rok vydání: 2016
Předmět:
Zdroj: SpringerPlus
ISSN: 2193-1801
Popis: The instant system availability \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_\tau (t)$$\end{document}Sτ(t) of a repairable system with the renewal equation was studied. The starting point monotonicity of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_\tau (t)$$\end{document}Sτ(t) was proved and the upper bound of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_\tau (t)$$\end{document}Sτ(t) is also derived. It was found that the interval of instant system availability monotonically decreases. In addition, we provide examples that validate the analytically derived properties of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_\tau (t)$$\end{document}Sτ(t) based on the Lognormal, Gamma and Weibull distributions and the results show that the value of T is slightly smaller than its value defined in Theorem 2. The procedure of using a bathtub as application for this article is also discussed.
Databáze: OpenAIRE