A field-pilot for passive bioremediation of As-rich acid mine drainage

Autor: Lidia Fernandez-Rojo, Vincent Tardy, Sophie Delpoux, Corinne Casiot, Odile Bruneel, Angélique Desoeuvre, Marina Héry, Guillaume Morin, J. Boisson, Elia Laroche, Fabienne Battaglia-Brunet, Julie Savignac, G. Grapin, Catherine Joulian
Přispěvatelé: Hydrosciences Montpellier (HSM), Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Anteagroup, Institut de minéralogie, de physique des matériaux et de cosmochimie (IMPMC), Muséum national d'Histoire naturelle (MNHN)-Institut de recherche pour le développement [IRD] : UR206-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Bureau de Recherches Géologiques et Minières (BRGM) (BRGM), OSU OREME (SO POLLUMINE Observatory), Ecole Doctorale GALA (PhD fellowship of Lidia Fernandez-Rojo, 2014-2017), ANR-13-ECOT-0009,IngECOST-DMA,Ingénierie écologique appliquée à la gestion intégrée de stériles et drainages miniers acides riches en arsenic(2013), Institut national des sciences de l'Univers (INSU - CNRS)-Institut de Recherche pour le Développement (IRD)-Université Montpellier 2 - Sciences et Techniques (UM2)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Environmental Engineering
[SDV.BIO]Life Sciences [q-bio]/Biotechnology
Hydraulic retention time
0208 environmental biotechnology
chemistry.chemical_element
Passive treatment
02 engineering and technology
010501 environmental sciences
Management
Monitoring
Policy and Law

01 natural sciences
Mining
Arsenic
chemistry.chemical_compound
Bioremediation
Bioreactors
As(III) oxidation
medicine
Field bioreactor
Sulfate
Arsenic removal rate
Waste Management and Disposal
0105 earth and related environmental sciences
Arsenite
Tooeleite
Chemistry
[SDE.IE]Environmental Sciences/Environmental Engineering
Arsenate
General Medicine
Acid mine drainage
6. Clean water
020801 environmental engineering
Amorphous ferric arsenate
Biodegradation
Environmental

Environmental chemistry
Ferric
Arsenates
France
Oxidation-Reduction
Water Pollutants
Chemical

medicine.drug
Zdroj: Journal of Environmental Management
Journal of Environmental Management, 2019, 232, pp.910-918. ⟨10.1016/j.jenvman.2018.11.116⟩
Journal of Environmental Management, Elsevier, 2019, 232, pp.910-918. ⟨10.1016/j.jenvman.2018.11.116⟩
ISSN: 0301-4797
1095-8630
Popis: A field-pilot bioreactor exploiting microbial iron (Fe) oxidation and subsequent arsenic (As) and Fe co-precipitation was monitored during 6 months for the passive treatment of As-rich acid mine drainage (AMD). It was implemented at the Carnoules mining site (southern France) where AMD contained 790-1315 mg L-1 Fe(II) and 84-152 mg L-1 As, mainly as As(Ill) (78-83%). The bioreactor consisted in five shallow trays of 1.5 m(2) in series, continuously fed with AMD by natural flow. We monitored the flow rate and the water physico-chemistry including redox Fe and As speciation. Hydraulic retention time (HRT) was calculated and the precipitates formed inside the bioreactor were characterized (mineralogy, Fe and As content, As redox state). Since As(III) oxidation improves As retention onto Fe minerals, bacteria with the capacity to oxidize As(III) were quantified through their marker gene aioA. Arsenic removal yields in the pilot ranged between 3% and 97% (average rate (1.8 +/- 0.8) X 10(-8) mol L-1 s(-1)), and were positively correlated to HRT and inlet water dissolved oxygen concentration. Fe removal yields did not exceed 11% (average rate (7 +/- 5) X 10(-8) mol L-1 s(-1)). In the first 32 days the precipitate contained tooeleite, a rare arsenite ferric sulfate mineral. Then, it evolved toward an amorphous ferric arsenate phase. The As/Fe molar ratio and As(V) to total As proportion increased from 0.29 to 0.86 and from similar to 20% to 99%, respectively. The number of bacterial aioA gene copies increased ten-fold during the first 48 days and stabilized thereafter. These results and the monitoring of arsenic speciation in the inlet and the outlet water, provide evidences that As(III) oxidized in the pilot. The biotreatment system we designed proved to be suitable for high As DMA. The formation of sludge highly enriched into As(V) rather than As(III) is advantageous in the perspective of long term storage.
Databáze: OpenAIRE