The Nielsen Borsuk-Ulam number
Autor: | Fabiana Santos Cotrim, Daniel Vendrúscolo |
---|---|
Rok vydání: | 2017 |
Předmět: | |
Zdroj: | Bull. Belg. Math. Soc. Simon Stevin 24, no. 4 (2017), 613-619 |
ISSN: | 1370-1444 |
DOI: | 10.36045/bbms/1515035010 |
Popis: | A Nielsen-Borsuk-Ulam number ($NBU(f,\tau)$) is defined for continuous maps $f:X\to Y$ where $X$ and $Y$ are closed orientable triangulable $n$-mani\-folds and $X$ has a free involution $\tau$. This number is a lower bound, in the homotopy class of $f$, for the number of pairs of points in $X$ satisfying $f(x)=f\circ\tau(x)$. It is proved that $NBU(f,\tau)$ can be realized (Wecken type theorem) when $n\ge 3$. |
Databáze: | OpenAIRE |
Externí odkaz: |