The Nielsen Borsuk-Ulam number

Autor: Fabiana Santos Cotrim, Daniel Vendrúscolo
Rok vydání: 2017
Předmět:
Zdroj: Bull. Belg. Math. Soc. Simon Stevin 24, no. 4 (2017), 613-619
ISSN: 1370-1444
DOI: 10.36045/bbms/1515035010
Popis: A Nielsen-Borsuk-Ulam number ($NBU(f,\tau)$) is defined for continuous maps $f:X\to Y$ where $X$ and $Y$ are closed orientable triangulable $n$-mani\-folds and $X$ has a free involution $\tau$. This number is a lower bound, in the homotopy class of $f$, for the number of pairs of points in $X$ satisfying $f(x)=f\circ\tau(x)$. It is proved that $NBU(f,\tau)$ can be realized (Wecken type theorem) when $n\ge 3$.
Databáze: OpenAIRE