Soil characteristics more strongly influence soil bacterial communities than land-use type
Autor: | Etienne Yergeau, Eiko E. Kuramae, Lina C. Wong, Johannes A. van Veen, George A. Kowalchuk, Agata Pijl |
---|---|
Přispěvatelé: | Animal Ecology, Systems Ecology, Amsterdam Global Change Institute, Microbial Ecology (ME) |
Jazyk: | angličtina |
Rok vydání: | 2012 |
Předmět: |
land use change
DNA Bacterial Firmicutes RNA 16S polymerase chain reaction soil nitrogen DNA sequence soil microorganism electrokinesis chemistry Real-Time Polymerase Chain Reaction Applied Microbiology and Biotechnology Soil NIOO Abundance (ecology) Soil pH RNA Ribosomal 16S Gammaproteobacteria genetics soil carbon Phylogeny Soil Microbiology phosphate Alphaproteobacteria Netherlands growth development and aging abundance real time Ecology biology Bacteria pH Denaturing Gradient Gel Electrophoresis microbiology Community structure Biodiversity Sequence Analysis DNA biology.organism_classification bacterium Electrophoreses bacterial DNA phylogenetics classification real time polymerase chain reaction Soil water microbial community |
Zdroj: | FEMS Microbiology Ecology, 79(1), 12-24. Oxford University Press Kuramae, E E, Yergeau, E, Wong, L C, Pijl, A S, van Veen, J A & Kowalchuk, G A 2012, ' Soil characteristics more strongly influence soil bacterial communities than land-use type. ', FEMS Microbiology Ecology, vol. 79, no. 1, pp. 12-24 . https://doi.org/10.1111/j.1574-6941.2011.01192.x FEMS Microbiology Ecology, 79(1), 12-24. Wiley-Blackwell |
ISSN: | 0168-6496 1574-6941 |
DOI: | 10.1111/j.1574-6941.2011.01192.x |
Popis: | To gain insight into the factors driving the structure of bacterial communities in soil, we applied real-time PCR, PCR-denaturing gradient gel electrophoreses, and phylogenetic microarray approaches targeting the 16S rRNA gene across a range of different land usages in the Netherlands. We observed that the main differences in the bacterial communities were not related to land-use type, but rather to soil factors. An exception was the bacterial community of pine forest soils (PFS), which was clearly different from all other sites. PFS had lowest bacterial abundance, lowest numbers of operational taxonomic units (OTUs), lowest soil pH, and highest C N ratios. C N ratio strongly influenced bacterial community structure and was the main factor separating PFS from other fields. For the sites other than PFS, phosphate was the most important factor explaining the differences in bacterial communities across fields. Firmicutes were the most dominant group in almost all fields, except in PFS and deciduous forest soils (DFS). In PFS, Alphaproteobacteria was most represented, while in DFS, Firmicutes and Gammaproteobacteria were both highly represented. Interestingly, Bacillii and Clostridium OTUs correlated with pH and phosphate, which might explain their high abundance across many of the Dutch soils. Numerous bacterial groups were highly correlated with specific soil factors, suggesting that they might be useful as indicators of soil status. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved 79 1 January 2012 10.1111/j.1574-6941.2011.01192.x Research Article Research Articles © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved. |
Databáze: | OpenAIRE |
Externí odkaz: |