Deep-Learning-Based Dynamic Range Compression for 3D Scene Hologram

Autor: Peter Schelkens, Yota Yamamoto, Atsushi Shiraki, Tomoyoshi Ito, Tomoyoshi Shimobaba, Ikuo Hoshi, David Blinder, Takashi Kakue
Přispěvatelé: Singh, Kehar, Gupta, A. K., Khare, Sudhir, Dixit, Nimish, Pant, Kamal, Multidimensional signal processing and communication, Electronics and Informatics
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Springer Proceedings in Physics ISBN: 9789811592584
Popis: This study proposes a dynamic-range compression for digital holograms generated from three-dimensional scenes using deep neural network (DNN). This method uses an error diffusion algorithm to binarize holograms with an 8-bit gradation; moreover, the DNN predicts the original gradation holograms from binary holograms. This method’s performance exceeds that of JPEG 2000 and high-efficiency video coding.
Databáze: OpenAIRE