Deep-Learning-Based Dynamic Range Compression for 3D Scene Hologram
Autor: | Peter Schelkens, Yota Yamamoto, Atsushi Shiraki, Tomoyoshi Ito, Tomoyoshi Shimobaba, Ikuo Hoshi, David Blinder, Takashi Kakue |
---|---|
Přispěvatelé: | Singh, Kehar, Gupta, A. K., Khare, Sudhir, Dixit, Nimish, Pant, Kamal, Multidimensional signal processing and communication, Electronics and Informatics |
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: | |
Zdroj: | Springer Proceedings in Physics ISBN: 9789811592584 |
Popis: | This study proposes a dynamic-range compression for digital holograms generated from three-dimensional scenes using deep neural network (DNN). This method uses an error diffusion algorithm to binarize holograms with an 8-bit gradation; moreover, the DNN predicts the original gradation holograms from binary holograms. This method’s performance exceeds that of JPEG 2000 and high-efficiency video coding. |
Databáze: | OpenAIRE |
Externí odkaz: |