Autor: |
Maroua Oueslati, Mulet, Magdalena, Zouaoui, Mohamed, Chandeysson, Charlotte, Lalucat, Jorge, Hajlaoui, Mohamed Rabeh, Berge, Odile, García-Valdés, Elena, Sadfi-Zouaoui, Najla |
Rok vydání: |
2020 |
DOI: |
10.6084/m9.figshare.13175558.v1 |
Popis: |
Additional file 1: Table S1. Localization and characteristics of the Tunisian orchards surveyed for blast and black pit disease in 2015, 2016 and 2017. Table S2. Other Pseudomonas strains characteristics isolated from symptomatic samples. Table S3. Detection of enzymatic activity of P. syringae and P. congelans strains of this study, using API ZYM system. Table S4. Resistance antibiotic patterns of the P. syringae and P. congelans strains used in this study. Table S5. Matrix of pairwise genetic similarity of rpoD gene sequences of strains of this study, strains from symptomatic citrus in Iran (FBF strains) and in Serbia (IZB strains). Fig. S1. Phylogenetic tree built with Neighbor joining method based on cts partial sequences of P. syringae strains isolated from Tunisian citrus orchards. Fig. S2. BOX fingerprints of representative strains of the P. syringae group isolated from citrus in symptomatic Tunisian orchards from different regions. Fig. S3. Phylogenetic tree based on the rpoD gene sequences of P. syringae strains of this study, together with other strains of P. syringae from Tunisia, (Abdellatif et al. 2017), Montenegro (Ivanović et al. 2017) and Iran (Beiki et al. 2016). Distance matrices were calculated by the Jukes-Cantor method (Jukes and Cantor 1969). Dendrograms were generated by the neighbour-joining method. P. aeruginosa ATCC 10145 T was used as the outgroup. The bar indicates sequence divergence. Percentage bootstrap values of more than 50% (from 1000 replicates) are indicated at the nodes. GenBank accession numbers are given in parentheses. |
Databáze: |
OpenAIRE |
Externí odkaz: |
|