Minimizing movements for mean curvature flow of droplets with prescribed contact angle
Autor: | Giovanni Bellettini, Shokhrukh Yusufovich Kholmatov |
---|---|
Rok vydání: | 2018 |
Předmět: |
Mean curvature flow
Mean curvature Applied Mathematics General Mathematics 010102 general mathematics Mathematical analysis Comparison results Approximation algorithm Capillary functional Minimizing movements 01 natural sciences 010101 applied mathematics Contact angle Mean curvature flow with prescribed contact angle Hyperplane Sets of finite perimeter Mathematics::Differential Geometry Mean curvature flow with prescribed contact angle Sets of finite perimeter Capillary functional Minimizing movements 0101 mathematics Mathematics |
Zdroj: | Journal de Mathématiques Pures et Appliquées. 117:1-58 |
ISSN: | 0021-7824 |
DOI: | 10.1016/j.matpur.2018.06.003 |
Popis: | We study the mean curvature motion of a droplet flowing by mean curvature on a horizontal hyperplane with a possibly nonconstant prescribed contact angle. Using the solutions constructed as a limit of an approximation algorithm of Almgren–Taylor–Wang and Luckhaus–Sturzenhecker, we show the existence of a weak evolution, and its compatibility with a distributional solution. We also prove various comparison results. |
Databáze: | OpenAIRE |
Externí odkaz: |