Ricci DeTurck Flow on Incomplete Manifolds

Autor: Tobias Marxen, Boris Vertman
Jazyk: angličtina
Rok vydání: 2022
Předmět:
ISSN: 1169-1212
DOI: 10.25537/dm.2022v27.1169-1212
Popis: In this paper we construct a Ricci DeTurck flow on any incomplete Riemannian manifold with bounded curvature. The central property of the flow is that it stays uniformly equivalent to the initial incomplete Riemannian metric, and in that sense preserves any given initial singularity structure. Together with the corresponding result by Shi for complete manifolds [ W.-X. Shi, Deforming the metric on complete Riemannian manifolds, J. Differential Geometry 30 (1989), 223-301], this gives that any (complete or incomplete) manifold of bounded curvature can be evolved by the Ricci DeTurck flow for a short time.
DOCUMENTA MATHEMATICA, Vol 27 (2022), p. 1169-1212
Databáze: OpenAIRE