A calculus of branching processes

Autor: Thomas Ehrhard, Ying Jiang, Jean Krivine
Přispěvatelé: Institut de Recherche en Informatique Fondamentale (IRIF (UMR_8243)), Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Preuves, Programmes et Systèmes (PPS), Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7), State Key Laboratory of Computer Science [Beijing] (LCS), Institute of Software Chinese Academy of Sciences [Beijing], Harvard Medical School [Boston] (HMS), Institute of Software, Chinese Academy of Sciences [Beijing] (CAS)
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Zdroj: Theoretical Computer Science
Theoretical Computer Science, Elsevier, 2019, ⟨10.1016/j.tcs.2019.06.028⟩
ISSN: 0304-3975
1879-2294
DOI: 10.1016/j.tcs.2019.06.028⟩
Popis: International audience; CCS-like calculi can be viewed as an extension of classical automata with communication primitives. We are interested here to follow this principle, applied to tree-automata. It naturally yields a calculus of branching processes (CBP), where the continuations of communications are allowed to branch according to the arity of the communication channel. After introducing the calculus with a reduction semantics we show that CBP can be "implemented" by a fully compositional LTS semantics. We argue that CBP offers an interesting tradeoff between calculi with a fixed communication topologyà la CCS and calculi with dynamic connectivity such as the π-calculus.
Databáze: OpenAIRE