Popis: |
The only widely used and accepted method for long-term cell preservation is storage below -130 degrees C. The biosciences will make increasing use of preservation and place new demands on it. Currently, cells are frozen in volumes greater than 1 ml but the new cell and implantation therapies (particularly those using stem cells) will require accurately defined freezing and storage conditions for each single cell. Broadly-based, routine freezing of biological samples allows the advantage of retrospective analysis and the possibility of saving genetic rights. For such applications, one billion is a modest estimation for the number of samples. Current cryotechniques cannot handle so many samples in an efficient and economic way, and the need for new cryotechnology is evident. The interdisciplinary approach presented here should lead to a new sample storage and operating strategy that fulfils the needs mentioned above. Fundamental principles of this new kind of smart sample storage are: (i) miniaturisation; (ii) modularisation; (iii) informationsample integration, i.e. freezing memory chips with samples; and (iv) physical and logical access to samples and information without thawing the samples. In contrast to current sample systems, the prototyped family of intelligent cryosubstrates allows the recovery of single wells (parts) of the substrate without thawing the rest of the sample. The development of intelligent cryosubstrates is linked to developments in high throughput freezing, high packing density storage and minimisation of cytotoxic protective agents. |