Calculation of multifractal dimensions in spin chains

Autor: E. Bogomolny, Y. Y. Atas
Přispěvatelé: Laboratoire de Physique Théorique et Modèles Statistiques (LPTMS), Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11), Regis, Géraldine
Jazyk: angličtina
Rok vydání: 2014
Předmět:
Physics
Basis (linear algebra)
Statistical Mechanics (cond-mat.stat-mech)
General Mathematics
General Engineering
General Physics and Astronomy
FOS: Physical sciences
Articles
Nonlinear Sciences - Chaotic Dynamics
01 natural sciences
Fractal dimension
010305 fluids & plasmas
[PHYS.COND.CM-SM] Physics [physics]/Condensed Matter [cond-mat]/Statistical Mechanics [cond-mat.stat-mech]
[NLIN.NLIN-CD] Nonlinear Sciences [physics]/Chaotic Dynamics [nlin.CD]
0103 physical sciences
[NLIN.NLIN-CD]Nonlinear Sciences [physics]/Chaotic Dynamics [nlin.CD]
Statistical physics
Variety (universal algebra)
Chaotic Dynamics (nlin.CD)
[PHYS.COND.CM-SM]Physics [physics]/Condensed Matter [cond-mat]/Statistical Mechanics [cond-mat.stat-mech]
010306 general physics
Wave function
Condensed Matter - Statistical Mechanics
Spin-½
Zdroj: Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences (1934–1990)
Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences (1934–1990), Royal Society, The, 2014, 372, pp.20120520
ISSN: 0080-4614
Popis: It was demonstrated in [Phys. Rev. E 86, 021104, (2012)], that the ground-state wave functions for a large variety of one-dimensional spin-1/2 models are multifractals in the natural spin-z basis. We present here the details of analytical derivations and numerical confirmations of these results.
Comment: 25 pages
Databáze: OpenAIRE