Pro-categories in homotopy theory
Autor: | Geoffroy Horel, Yonatan Harpaz, Ilan Barnea |
---|---|
Přispěvatelé: | Laboratoire Analyse, Géométrie et Applications (LAGA), Université Paris 8 Vincennes-Saint-Denis (UP8)-Centre National de la Recherche Scientifique (CNRS)-Institut Galilée-Université Paris 13 (UP13), Max-Planck-Institut für Mathematik (MPI) |
Jazyk: | angličtina |
Rok vydání: | 2015 |
Předmět: |
Pure mathematics
model categories Model category 18G55 01 natural sciences 18C35 Topos theory Mathematics::Category Theory 0103 physical sciences FOS: Mathematics Algebraic Topology (math.AT) étale homotopy type Category Theory (math.CT) Mathematics - Algebraic Topology 0101 mathematics [MATH]Mathematics [math] 55U35 Equivalence (measure theory) Categorical variable Mathematics Homotopy 010102 general mathematics Mathematics - Category Theory 16. Peace & justice Dual (category theory) pro-categories [MATH.MATH-AT]Mathematics [math]/Algebraic Topology [math.AT] 010307 mathematical physics Geometry and Topology infinity-categories profinite completion Realization (systems) |
Zdroj: | Algebraic and Geometric Topology Algebraic and Geometric Topology, Mathematical Sciences Publishers, 2017, 17 (1), pp.567-643. ⟨10.2140/agt.2017.17.567⟩ Algebr. Geom. Topol. 17, no. 1 (2017), 567-643 Algebraic & Geometric Topology |
ISSN: | 1472-2747 1472-2739 |
DOI: | 10.2140/agt.2017.17.567⟩ |
Popis: | International audience; The goal of this paper is to prove an equivalence between the model categorical approach to pro-categories, as studied by Isaksen, Schlank and the first author, and the $\infty$-categorical approach, as developed by Lurie. Three applications of our main result are described. In the first application we use (a dual version of) our main result to give sufficient conditions on an $\omega$-combinatorial model category, which insure that its underlying $\infty$-category is $\omega$-presentable. In the second application we consider the pro-category of simplicial \'etale sheaves and use it to show that the topological realization of any Grothendieck topos coincides with the shape of the hyper-completion of the associated $\infty$-topos. In the third application we show that several model categories arising in profinite homotopy theory are indeed models for the $\infty$-category of profinite spaces. As a byproduct we obtain new Quillen equivalences between these models, and also obtain an example which settles negatively a question raised by Raptis. |
Databáze: | OpenAIRE |
Externí odkaz: |