Learning Multilingual Expressive Speech Representation for Prosody Prediction without Parallel Data
Autor: | Duret, Jarod, Parcollet, Titouan, Estève, Yannick |
---|---|
Přispěvatelé: | Laboratoire Informatique d'Avignon (LIA), Avignon Université (AU)-Centre d'Enseignement et de Recherche en Informatique - CERI, Samsung AI Center [Cambridge], University of Cambridge [UK] (CAM), European Project: 957017,SELMA |
Jazyk: | angličtina |
Rok vydání: | 2023 |
Předmět: |
FOS: Computer and information sciences
Sound (cs.SD) Computer Science - Computation and Language speech synthesis [STAT.ML]Statistics [stat]/Machine Learning [stat.ML] Audio and Speech Processing (eess.AS) FOS: Electrical engineering electronic engineering information engineering prosody prediction speech generation Computation and Language (cs.CL) Computer Science - Sound Electrical Engineering and Systems Science - Audio and Speech Processing |
Zdroj: | Speech Synthesis Workshop (SSW) Speech Synthesis Workshop (SSW), Aug 2023, Grenoble, France |
Popis: | International audience; We propose a method for speech-to-speech emotionpreserving translation that operates at the level of discrete speech units. Our approach relies on the use of multilingual emotion embedding that can capture affective information in a language-independent manner. We show that this embedding can be used to predict the pitch and duration of speech units in a target language, allowing us to resynthesize the source speech signal with the same emotional content. We evaluate our approach to English and French speech signals and show that it outperforms a baseline method that does not use emotional information, including when the emotion embedding is extracted from a different language. Even if this preliminary study does not address directly the machine translation issue, our results demonstrate the effectiveness of our approach for cross-lingual emotion preservation in the context of speech resynthesis. |
Databáze: | OpenAIRE |
Externí odkaz: |