Learning Multilingual Expressive Speech Representation for Prosody Prediction without Parallel Data

Autor: Duret, Jarod, Parcollet, Titouan, Estève, Yannick
Přispěvatelé: Laboratoire Informatique d'Avignon (LIA), Avignon Université (AU)-Centre d'Enseignement et de Recherche en Informatique - CERI, Samsung AI Center [Cambridge], University of Cambridge [UK] (CAM), European Project: 957017,SELMA
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: Speech Synthesis Workshop (SSW)
Speech Synthesis Workshop (SSW), Aug 2023, Grenoble, France
Popis: International audience; We propose a method for speech-to-speech emotionpreserving translation that operates at the level of discrete speech units. Our approach relies on the use of multilingual emotion embedding that can capture affective information in a language-independent manner. We show that this embedding can be used to predict the pitch and duration of speech units in a target language, allowing us to resynthesize the source speech signal with the same emotional content. We evaluate our approach to English and French speech signals and show that it outperforms a baseline method that does not use emotional information, including when the emotion embedding is extracted from a different language. Even if this preliminary study does not address directly the machine translation issue, our results demonstrate the effectiveness of our approach for cross-lingual emotion preservation in the context of speech resynthesis.
Databáze: OpenAIRE