Real-space imaging of non-collinear antiferromagnetic order with a single-spin magnetometer
Autor: | Stéphane Fusil, Manuel Bibes, Karin Garcia, Jean-Yves Chauleau, W. Akhtar, S. Chouaieb, C. Carrétéro, Agnès Barthélémy, Patrick Appel, Joo-Von Kim, Vincent Jacques, I. Gross, Vincent Garcia, Luis Martinez, Michel Viret, Patrick Maletinsky, Nicolas Jaouen |
---|---|
Přispěvatelé: | Laboratoire Charles Coulomb (L2C), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Aimé Cotton (LAC), École normale supérieure - Cachan (ENS Cachan)-Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), Unité mixte de physique CNRS/Thales (UMPhy CNRS/THALES), THALES [France]-Centre National de la Recherche Scientifique (CNRS), University of Basel (Unibas), Centre de Nanosciences et de Nanotechnologies [Orsay] (C2N), Université Paris-Sud - Paris 11 (UP11)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Laboratoire Nano-Magnétisme et Oxydes (LNO), Service de physique de l'état condensé (SPEC - UMR3680), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut Rayonnement Matière de Saclay (IRAMIS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Synchrotron SOLEIL (SSOLEIL), Centre National de la Recherche Scientifique (CNRS), ANR-15-CE24-0003,FERROMON,Contrôle ferroélectrique d'un isolant de Mott aux échelles nanométrique/nanoseconde(2015), ANR-17-CE09-0030,PIAF,Imagerie et manipulation des antiferromagnétiques(2017), ANR-11-IDEX-0003,IPS,Idex Paris-Saclay(2011), European Project: 639802,H2020,ERC-2014-STG,IMAGINE(2015), European Project: 611143,EC:FP7:ICT,FP7-ICT-2013-10,DIADEMS(2013), Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11)-École normale supérieure - Cachan (ENS Cachan), Centre National de la Recherche Scientifique (CNRS)-THALES, Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS)-Université Paris-Saclay |
Rok vydání: | 2017 |
Předmět: |
Materials science
Magnetism Magnetometer FOS: Physical sciences 02 engineering and technology 01 natural sciences law.invention Magnetization chemistry.chemical_compound Condensed Matter::Materials Science law 0103 physical sciences Antiferromagnetism 010306 general physics Bismuth ferrite Condensed Matter - Materials Science Multidisciplinary Magnetic moment Spintronics Condensed matter physics Materials Science (cond-mat.mtrl-sci) 021001 nanoscience & nanotechnology Ferromagnetism chemistry [PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] Condensed Matter::Strongly Correlated Electrons 0210 nano-technology |
Zdroj: | Nature Nature, 2017, 549 (7671), pp.252-256. ⟨10.1038/nature23656⟩ Nature, Nature Publishing Group, 2017, 549 (7671), pp.252-256. ⟨10.1038/nature23656⟩ |
ISSN: | 1476-4687 0028-0836 1476-4679 |
Popis: | While ferromagnets are at the heart of daily life applications, their large magnetization and resulting energy cost for switching bring into question their suitability for reliable low-power spintronic devices. Non-collinear antiferromagnetic systems do not suffer from this problem and often possess remarkable extra functionalities: non-collinear spin order may break space-inversion symmetry and thus allow electric-field control of magnetism, or produce emergent spin-orbit effects, which enable efficient spin-charge interconversion. To harness these unique traits for next-generation spintronics, the nanoscale control and imaging capabilities that are now routine for ferromagnets must be developed for antiferromagnetic systems. Here, using a non-invasive scanning nanomagnetometer based on a single nitrogen-vacancy (NV) defect in diamond, we demonstrate the first real-space visualization of non-collinear antiferromagnetic order in a magnetic thin film, at room temperature. We image the spin cycloid of a multiferroic BiFeO$_3$ thin film and extract a period of $\sim70$ nm, consistent with values determined by macroscopic diffraction. In addition, we take advantage of the magnetoelectric coupling present in BiFeO$_3$ to manipulate the cycloid propagation direction by an electric field. Besides highlighting the unique potential of NV magnetometry for imaging complex antiferromagnetic orders at the nanoscale, these results demonstrate how BiFeO$_3$ can be used as a versatile platform for the design of reconfigurable nanoscale spin textures. |
Databáze: | OpenAIRE |
Externí odkaz: |