Dynamic Graph Coloring

Autor: Stefan Langerman, André van Renssen, Luis Barba, Marcel Roeloffzen, Jean Cardinal, Matias Korman, Sander Verdonschot
Přispěvatelé: Algorithms, Geometry and Applications
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Zdroj: Algorithmica, 81 (4)
Algorithmica
Algorithmica, 81(4), 1319-1341. Springer
ISSN: 0178-4617
1432-0541
Popis: In this paper we study the number of vertex recolorings that an algorithm needs to perform in order to maintain a proper coloring of a graph under insertion and deletion of vertices and edges. We present two algorithms that achieve different trade-offs between the number of recolorings and the number of colors used. For any d>0, the first algorithm maintains a proper O(CdN1/d)-coloring while recoloring at most O(d) vertices per update, where C and N are the maximum chromatic number and maximum number of vertices, respectively. The second algorithm reverses the trade-off, maintaining an O(Cd)-coloring with O(dN1/d) recolorings per update. The two converge when d=logN, maintaining an O(ClogN)-coloring with O(logN) recolorings per update. We also present a lower bound, showing that any algorithm that maintains a c-coloring of a 2-colorable graph on N vertices must recolor at least Ω(N2c(c−1)) vertices per update, for any constant c≥2.
Algorithmica, 81 (4)
ISSN:0178-4617
ISSN:1432-0541
Databáze: OpenAIRE