Popis: |
Constraints such as opening hours or passenger capacities influence travel options that can be offered by an airport and by the connecting airlines. If infrastructure, policy or technological measures modify transport options, then the benefits do not only depend on the technology, but also on possibly heterogeneous user preferences such as desired arrival times or on the availability of alternative travel modes. This paper proposes an agent-based, iterative assignment procedure to model European air traffic and German passenger demand on a microscopic level, capturing individual passenger preferences. Air transport technology is simulated microscopically, i.e. each aircraft is represented as single unit with attached attributes such as departure time, flight duration or seat availability. Trip-chaining and delay propagation can be added. Microsimulation is used to verify and assess passengers’ choices of travel alternatives, where those choices improve over iterations until an agent-based stochastic user equilibrium is reached. This requires fast simulation models, thus, similar to other approaches in air traffic modelling a queue model is used. In contrast to those approaches, the queue model in this work is solved algorithmically. Overall, the approach is suited to analyze, forecast and evaluate the consequences of mid-distance transport measures. |