Reactive Oxygen Species-Dependent Innate Immune Mechanisms Control Methicillin-Resistant Staphylococcus aureus Virulence in the Drosophila Larval Model

Autor: Mathieu Coureuil, Laurence Arbibe, Daniel Euphrasie, Louison Lallemant, Clémence Bouvier, Xiongqi Ding, Elodie Ramond, Alain Charbit, Anne Jamet, Xiangyan He
Přispěvatelé: Institut Necker Enfants-Malades (INEM - UM 111 (UMR 8253 / U1151)), Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Structure Fédérative de Recherche Necker (SFR Necker - UMS 3633 / US24), Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Imagine - Institut des maladies génétiques (IHU) (Imagine - U1163), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Paris (UP), Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Paris Cité (UPCité), Charbit, Alain
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Methicillin-Resistant Staphylococcus aureus
Pore Forming Cytotoxic Proteins
Staphylococcus aureus
Virulence
medicine.disease_cause
Microbiology
[SDV.IMM.II]Life Sciences [q-bio]/Immunology/Innate immunity
intestinal infection
03 medical and health sciences
Duox
Shigella flexneri
Immune system
[SDV.MHEP.MI]Life Sciences [q-bio]/Human health and pathology/Infectious diseases
Virology
medicine
Animals
Antimicrobial peptide production
[SDV.IMM.II] Life Sciences [q-bio]/Immunology/Innate immunity
030304 developmental biology
0303 health sciences
Innate immune system
biology
030306 microbiology
catalase
Gene Expression Regulation
Bacterial

Staphylococcal Infections
biochemical phenomena
metabolism
and nutrition

bacterial infections and mycoses
biology.organism_classification
Methicillin-resistant Staphylococcus aureus
[SDV.MP.BAC]Life Sciences [q-bio]/Microbiology and Parasitology/Bacteriology
Immunity
Innate

QR1-502
3. Good health
virulence
Disease Models
Animal

Drosophila melanogaster
Salmonella enterica
Larva
Host-Pathogen Interactions
[SDV.MHEP.MI] Life Sciences [q-bio]/Human health and pathology/Infectious diseases
[SDV.MP.BAC] Life Sciences [q-bio]/Microbiology and Parasitology/Bacteriology
Reactive Oxygen Species
Research Article
gastrointestinal infection
Zdroj: mBio
mBio, American Society for Microbiology, 2021, 12 (3), pp.e00276-21. ⟨10.1128/mBio.00276-21⟩
mBio, Vol 12, Iss 3 (2021)
mBio, 2021, 12 (3), pp.e00276-21. ⟨10.1128/mBio.00276-21⟩
ISSN: 2161-2129
2150-7511
Popis: Antibiotic-resistant Staphylococcus aureus strains constitute a major public health concern worldwide and are responsible for both health care- and community-associated infections. Here, we establish a robust and easy-to-implement model of oral S. aureus infection using Drosophila melanogaster larvae that allowed us to follow the fate of S. aureus at the whole-organism level as well as the host immune responses. Our study demonstrates that S. aureus infection triggers H2O2 production by the host via the Duox enzyme, thereby promoting antimicrobial peptide production through activation of the Toll pathway. Staphylococcal catalase mediates H2O2 neutralization, which not only promotes S. aureus survival but also minimizes the host antimicrobial response, hence reducing bacterial clearance in vivo. We show that while catalase expression is regulated in vitro by the accessory gene regulatory system (Agr) and the general stress response regulator sigma B (SigB), it no longer depends on these two master regulators in vivo. Finally, we confirm the versatility of this model by demonstrating the colonization and host stimulation capabilities of S. aureus strains belonging to different sequence types (CC8 and CC5) as well as of two other bacterial pathogens, Salmonella enterica serovar Typhimurium and Shigella flexneri. Thus, the Drosophila larva can be a general model to follow in vivo the innate host immune responses triggered during infection by human pathogens. IMPORTANCE The pathogenicity of methicillin-resistant S. aureus (MRSA) strains relies on their ability to produce a wide variety of tightly regulated virulence factors. Current in vivo models to analyze host-pathogen interactions are limited and difficult to manipulate. Here, we have established a robust and reliable model of oral S. aureus infection using Drosophila melanogaster larvae. We show that S. aureus stimulates host immunity through the production of reactive oxygen species (ROS) and antimicrobial peptide (AMP) and that ROS potentialize AMP gene expression. S. aureus catalase plays a key role in this complex environment and acts in vivo independently from SigB and Agr control. We propose that fly larvae can provide a general model for studying the colonization capabilities of human pathogens.
Databáze: OpenAIRE