Mean-field stability map of hard-sphere glasses
Autor: | Ada Altieri, Francesco Zamponi |
---|---|
Přispěvatelé: | Department of Physics [Roma La Sapienza], Università degli Studi di Roma 'La Sapienza' = Sapienza University [Rome], Laboratoire de Physique Théorique de l'ENS (LPTENS), Université Pierre et Marie Curie - Paris 6 (UPMC)-Fédération de recherche du Département de physique de l'Ecole Normale Supérieure - ENS Paris (FRDPENS), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Systèmes Désordonnés et Applications, Laboratoire de physique de l'ENS - ENS Paris (LPENS (UMR_8023)), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Université Paris Diderot - Paris 7 (UPD7)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Université Paris Diderot - Paris 7 (UPD7) |
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: |
Spinodal
Materials science Statistical Mechanics (cond-mat.stat-mech) Condensed matter physics FOS: Physical sciences Jamming Disordered Systems and Neural Networks (cond-mat.dis-nn) Hard spheres Condensed Matter - Disordered Systems and Neural Networks Condensed Matter - Soft Condensed Matter 01 natural sciences 010305 fluids & plasmas Amorphous solid Condensed Matter::Soft Condensed Matter Mean field theory 0103 physical sciences Shear stress Soft Condensed Matter (cond-mat.soft) [PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] 010306 general physics Glass transition Condensed Matter - Statistical Mechanics ComputingMilieux_MISCELLANEOUS Phase diagram |
Zdroj: | Physical Review E Physical Review E, American Physical Society (APS), 2019, 100 (3), ⟨10.1103/PhysRevE.100.032140⟩ |
ISSN: | 2470-0045 2470-0053 |
Popis: | The response of amorphous solids to an applied shear deformation is an important problem, both in fundamental and applied research. To tackle this problem, we focus on a system of hard spheres in infinite dimensions as a solvable model for colloidal systems and granular matter. The system is prepared above the dynamical glass transition density, and we discuss the phase diagram of the resulting glass under compression, decompression, and shear strain, expanding on previous results [P. Urbani and F. Zamponi, Phys.Rev.Lett. 118, 038001 (2017)]. We show that the solid region is bounded by a "shear jamming" line, at which the solid reaches close packing, and a "shear yielding" line, at which the solid undergoes a spinodal instability towards a liquid, flowing phase. Furthermore, we characterize the evolution of these lines upon varying the glass preparation density. This work aims to provide a general overview of yielding and jamming phenomena in hard-sphere systems by a systematic exploration of the phase diagram. 9 pages, 3 figures |
Databáze: | OpenAIRE |
Externí odkaz: |