Differentiation between non-small cell lung cancer and radiation pneumonitis after carbon-ion radiotherapy by 18F-FDG PET/CT texture analysis

Autor: Katsuyuki Tanimoto, Makito Suga, Kentaro Tamura, Ryuichi Nishii, Kana Yamazaki, Tatsuya Higashi, Hiroshi Tsuji, Naoyoshi Yamamoto, Masato Kobayashi, Ryosuke Kohno, Kenta Miwa, Yuto Kamitaka
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Scientific Reports, Vol 11, Iss 1, Pp 1-9 (2021)
ISSN: 2045-2322
Popis: The differentiation of non-small cell lung cancer (NSCLC) and radiation pneumonitis (RP) is critically essential for selecting optimal clinical therapeutic strategies to manage post carbon-ion radiotherapy (CIRT) in patients with NSCLC. The aim of this study was to assess the ability of 18F-FDG PET/CT metabolic parameters and its textural image features to differentiate NSCLC from RP after CIRT to develop a differential diagnosis of malignancy and benign lesion. We retrospectively analyzed 18F-FDG PET/CT image data from 32 patients with histopathologically proven NSCLC who were scheduled to undergo CIRT and 31 patients diagnosed with RP after CIRT. The SUV parameters, metabolic tumor volume (MTV), total lesion glycolysis (TLG) as well as fifty-six texture parameters derived from seven matrices were determined using PETSTAT image-analysis software. Data were statistically compared between NSCLC and RP using Wilcoxon rank-sum tests. Diagnostic accuracy was assessed using receiver operating characteristics (ROC) curves. Several texture parameters significantly differed between NSCLC and RP (p max, 0.64; GLRLM run percentage, 0.83 and NGTDM coarseness, 0.82. Diagnostic accuracy was improved using GLRLM run percentage or NGTDM coarseness compared with SUVmax (p 18F-FDG uptake yielded excellent outcomes for differentiating NSCLC from radiation pneumonitis after CIRT, which outperformed SUV-based evaluation. In particular, GLRLM run percentage and NGTDM coarseness of 18F-FDG PET/CT images would be appropriate parameters that can offer high diagnostic accuracy.
Databáze: OpenAIRE