Spinal loads and trunk muscles forces during level walking - A combined in vivo and in silico study on six subjects

Autor: Thomas Zander, Francesca Di Puccio, Rizwan Arshad, Marwan El-Rich, Hendrik Schmidt, Lorenza Angelini
Jazyk: angličtina
Rok vydání: 2018
Předmět:
Popis: During level walking, lumbar spine is subjected to cyclic movements and intricate loading of the spinal discs and trunk musculature. This study aimed to estimate the spinal loads (T12-S1) and trunk muscles forces during a complete gait cycle. Six men, 24-33years walk barefoot at self-selected speed (4-5km/h). 3D kinematics and ground reaction forces were recorded using a motion capturing system and two force plates, implemented in an inverse dynamic musculoskeletal model to predict the spinal loads and trunk muscles forces. Additionally, the sensitivity of the intra-abdominal pressure and lumbar segment rotational stiffness was investigated. Peak spinal loads and trunk muscle forces were between the gait instances of heel strike and toe off. In L4-L5 segment, sensitivity analysis showed that average peak compressive, antero-posterior and medio-lateral shear forces were 130-179%, 2-15% and 1-6%, with max standard deviation (±STD) of 40%, 6% and 3% of the body weight. Average peak global muscles forces were 24-55% (longissimus thoracis), 11-23% (iliocostalis thoracis), 12-16% (external oblique), 17-25% (internal oblique) and 0-8% (rectus abdominus) of body weight whereas, the average peak local muscles forces were 11-19% (longissimus lumborum), 14-31% (iliocostalis lumborum) and 12-17% (multifidus). Maximum±STD of the global and local muscles forces were 13% and 8% of the body weight. Large inter-individual differences were found in peak compressive and trunk muscles forces whereas the sensitivity analysis also showed a substantial variation.
Databáze: OpenAIRE