Assessing the Impact of Different Ocean Analysis Schemes on Oceanic and Underwater Acoustic Predictions

Autor: Paolo Oddo, Yong-Min Jiang, Andrea Storto, Silvia Falchetti, Alessandra Tesei
Přispěvatelé: Storto A., Falchetti S., Oddo P., Jiang Y.-M., Tesei A.
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Journal of geophysical research. Oceans
125 (2020). doi:10.1029/2019JC015636
info:cnr-pdr/source/autori:Storto, Andrea; Falchetti, Silvia; Oddo, Paolo; Jiang, Yong Min; Tesei, Alessandra/titolo:Assessing the Impact of Different Ocean Analysis Schemes on Oceanic and Underwater Acoustic Predictions/doi:10.1029%2F2019JC015636/rivista:Journal of geophysical research. Oceans (Print)/anno:2020/pagina_da:/pagina_a:/intervallo_pagine:/volume:125
DOI: 10.1029/2019JC015636
Popis: Assimilating oceanic observations into prediction systems is an advantageous approach for real-time ocean environment characterization. However, its benefits to underwater acoustic predictions are not trivial due to the nonlinearity and sensitivity of underwater acoustic propagation to small-scale oceanic features. In order to assess the potential of oceanic data assimilation, integrated ocean-acoustic Observing System Simulation Experiments are conducted. Synthetic altimetry and in situ data were assimilated through a variational oceanographic data assimilation system. The predicted sound speed fields are then ingested in a range-dependent acoustic model for transmission loss (TL) predictions. The predicted TLs are analyzed for the purpose of (i) evaluating the contributions of different sources to the uncertainties of oceanic and acoustic forecasts and (ii) comparing the impact of different oceanic analysis schemes on the TL prediction accuracy. Using ensemble member clustering techniques, the contributions of boundary conditions, ocean parameterizations, and geoacoustic characterization to acoustic prediction uncertainties are addressed. Subsequently, the impact of three-dimensional variational (3DVAR), 4DVAR, and hybrid ensemble-3DVAR data assimilation on acoustic TL prediction at two signal frequencies (75 and 2,500Hz) and different ranges (30 and 60km) are compared. 3DVAR significantly improves the predicted TL accuracy compared to the control run. Promisingly, 4DVAR and hybrid data assimilation further improve the TL forecasts, the hybrid scheme achieving the highest skill scores for all cases, while being the most computationally intensive scheme. The optimal scheme choice thus depends on requirements on the accuracy and computational constraints. These findings foster developments of coupled data assimilation for operational underwater acoustic propagation.
Databáze: OpenAIRE