On an intermediate value theorem for polynomials and power series over a valued field
Autor: | Lea Terracini, Paolo Valabrega, Carla Massaza |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2016 |
Předmět: |
Power series
Discrete mathematics Computer Science::Computer Science and Game Theory Lemma (mathematics) Algebra and Number Theory Mathematics::Commutative Algebra intermediate value theorem Group (mathematics) Hensel’s lemma polynomials 010102 general mathematics Field (mathematics) Intermediate value theorem 01 natural sciences Residue field 0101 mathematics Hensel’s lemma intermediate value theorem polynomials power series valued fields power series valued fields Hensel's lemma Valuation (algebra) Mathematics |
Popis: | The paper proves an intermediate value theorem for polynomials and power series over a valued field with an additive divisible valuation group and infinite residue field. A deeper description of the behavior of the valuation for power series is obtained using Hensel’s lemma. |
Databáze: | OpenAIRE |
Externí odkaz: |