Resource Allocation for NOMA-Based D2D Systems Coexisting With Cellular Networks
Autor: | Xuan Tung Nguyen, Byung-Tae Jang, Taehyun Yoon, Van Duc Nguyen, Tien Hoa Nguyen, Dae-Seung Yoo |
---|---|
Rok vydání: | 2018 |
Předmět: |
Optimization problem
General Computer Science Heuristic (computer science) Computer science resource allocation 02 engineering and technology Communications system D2D communications 0203 mechanical engineering Telecommunications link 0202 electrical engineering electronic engineering information engineering General Materials Science Resource management Rayleigh fading business.industry Quality of service General Engineering NOMA 020302 automobile design & engineering 020206 networking & telecommunications Transmitter power output quality of service Cellular network Resource allocation lcsh:Electrical engineering. Electronics. Nuclear engineering business lcsh:TK1-9971 Power control Computer network Communication channel |
Zdroj: | IEEE Access, Vol 6, Pp 66293-66304 (2018) |
ISSN: | 2169-3536 |
Popis: | This paper describes a nonorthogonal multiple access (NOMA)-based device-to-device (D2D) communication system underlaying in a cellular network sharing time and frequency resource. To optimize the total transmit power for all users in the network, we investigate a comprehensive resource allocation solution consisting of joint subchannel assignments, user pairings, and power control. The optimization problem is a mixed integer linear program, which is solved in three low-complexity steps. We first group D2D users to minimize mutual interference from cellular users (CU). Second, we demonstrate a heuristic solution for coupling D2D users in each group. Finally, we minimize the total transmit power of all devices in the network while maintaining the SINR requirements for both CU and D2D users. The optimal solution is derived off-line using the Rayleigh fading channels for any given QoS level of CU and NOMA-D2D users. We recognize that both subchannel assignment and user pairings play the important roles in reducing the total transmit power of the network, in which both cellular and D2D users coexist. However, optimization of the subchannel assignment contributes more toward minimizing the total network transmit power than the proposed model of optimizing user pairings. |
Databáze: | OpenAIRE |
Externí odkaz: |