Rail induced lateral migration of particles across intact co-flowing liquids

Autor: Iwona Ziemecka, Amaury De Hemptinne, Vyacheslav Misko, Matthieu Briet, Pierre Gelin, Bihi, Ilyesse, Dominique Maes, Wim De Malsche
Přispěvatelé: Chemical Engineering and Separation Science, Chemical Engineering and Industrial Chemistry, Faculty of Engineering, Department of Bio-engineering Sciences, Structural Biology Brussels
Předmět:
Zdroj: Vrije Universiteit Brussel
Popis: This paper presents a rail guided method to apply Layer-by-Layer (LbL) coating on particles in a microfluidic device. The passive, microfluidic approach allows handling suspensions of particles to be coated in the system. The trajectory of the particles is controlled using engraved rails, inducing lateral movement of particles while keeping the axially oriented liquid flow (and the interface of different liquids) undisturbed. The depth and angle of the rails together with the liquid velocity were studied to determine a workable geometry of the device. A discontinuous LbL coating procedure was converted into one continuous process, demonstrating that the chip can perform seven consecutive steps normally conducted in batch operation, further easily extendable to larger cycle numbers. Coating of the particles with two bilayers was confirmed by fluorescent microscopy.
Databáze: OpenAIRE