Fock space representation of the circle quantum group

Autor: Francesco Sala, Olivier Schiffmann
Rok vydání: 2019
Předmět:
DOI: 10.48550/arxiv.1903.02813
Popis: In [arXiv:1711.07391] we have defined quantum groups $\mathbf{U}_\upsilon(\mathfrak{sl}(\mathbb{R}))$ and $\mathbf{U}_\upsilon(\mathfrak{sl}(S^1))$, which can be interpreted as continuous generalizations of the quantum groups of the Kac-Moody Lie algebras of finite, respectively affine type $A$. In the present paper, we define the Fock space representation $\mathcal{F}_{\mathbb{R}}$ of the quantum group $\mathbf{U}_\upsilon(\mathfrak{sl}(\mathbb{R}))$ as the vector space generated by real pyramids (a continuous generalization of the notion of partition). In addition, by using a variant of the "folding procedure" of Hayashi-Misra-Miwa, we define an action of $\mathbf{U}_\upsilon(\mathfrak{sl}(S^1))$ on $\mathcal{F}_{\mathbb{R}}$.
Comment: 25 pages; v2: 29 pages, Final version published in IMRN
Databáze: OpenAIRE