The Analytic Evolution of Dyson–Schwinger Equations via Homomorphism Densities

Autor: Ali Shojaei-Fard
Přispěvatelé: Institut des Hautes Etudes Scientifiques (IHES), IHES
Rok vydání: 2021
Předmět:
Zdroj: Math.Phys.Anal.Geom.
Math.Phys.Anal.Geom., 2021, 24 (2), pp.18. ⟨10.1007/s11040-021-09389-z⟩
ISSN: 1572-9656
1385-0172
DOI: 10.1007/s11040-021-09389-z
Popis: Feynman graphon representations of Feynman diagrams lead us to build a new separable Banach space $\mathcal {S}^{\Phi ,g}_{\approx }$ originated from the collection of all Dyson–Schwinger equations in a given (strongly coupled) gauge field theory Φ with the bare coupling constant g. We study the Gâteaux differential calculus on the space of functionals on $\mathcal {S}^{\Phi ,g}_{\approx }$ in terms of a new class of homomorphism densities. We then show that Taylor series representations of smooth functionals on $\mathcal {S}^{\Phi ,g}_{\approx }$ provide a new analytic description for solutions of combinatorial Dyson–Schwinger equations.
Databáze: OpenAIRE