A one-dimensional model for elasto-capillary necking

Autor: Claire Lestringant, Basile Audoly
Přispěvatelé: Department of Engineering [Cambridge], University of Cambridge [UK] (CAM), Laboratoire de mécanique des solides (LMS), École polytechnique (X)-MINES ParisTech - École nationale supérieure des mines de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), Lestringant, C [0000-0002-6929-4655], Apollo - University of Cambridge Repository
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Asymptotic analysis
Materials science
Capillary action
General Mathematics
[PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph]
FOS: Physical sciences
General Physics and Astronomy
Applied Physics (physics.app-ph)
02 engineering and technology
strain gradient elasticity
Condensed Matter - Soft Condensed Matter
[SPI.MECA.SOLID]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Solid mechanics [physics.class-ph]
Strain gradient
01 natural sciences
Surface tension
0103 physical sciences
010306 general physics
General Engineering
Dimensional modeling
Physics - Applied Physics
Mechanics
021001 nanoscience & nanotechnology
elasto-capillarity
Nonlinear system
asymptotic analysis
[SPI.MECA.STRU]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Structural mechanics [physics.class-ph]
mechanical engineering
Soft Condensed Matter (cond-mat.soft)
0210 nano-technology
bifurcations
Elasto-capillarity
Necking
Zdroj: Proceedings of the Royal Society of London. Series A, Mathematical and physical sciences
Proceedings of the Royal Society of London. Series A, Mathematical and physical sciences, Royal Society, The, 2020, 476 (2240), pp.20200337. ⟨10.1098/rspa.2020.0337⟩
ISSN: 0950-1207
DOI: 10.1098/rspa.2020.0337⟩
Popis: We derive a nonlinear one-dimensional (1d) strain gradient model predicting the necking of soft elastic cylinders driven by surface tension, starting from three-dimensional (3d) finite-strain elasticity. It is asymptotically correct: the microscopic displacement is identified by an energy method. The 1d model can predict the bifurcations occurring in the solutions of the 3d elasticity problem when the surface tension is increased, leading to a localization phenomenon akin to phase separation. Comparisons with finite-element simulations reveal that the 1d model resolves the interface separating two phases accurately, including well into the localized regime, and that it has a vastly larger domain of validity than 1d models proposed so far.
Databáze: OpenAIRE