A one-dimensional model for elasto-capillary necking
Autor: | Claire Lestringant, Basile Audoly |
---|---|
Přispěvatelé: | Department of Engineering [Cambridge], University of Cambridge [UK] (CAM), Laboratoire de mécanique des solides (LMS), École polytechnique (X)-MINES ParisTech - École nationale supérieure des mines de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), Lestringant, C [0000-0002-6929-4655], Apollo - University of Cambridge Repository |
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
Asymptotic analysis
Materials science Capillary action General Mathematics [PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph] FOS: Physical sciences General Physics and Astronomy Applied Physics (physics.app-ph) 02 engineering and technology strain gradient elasticity Condensed Matter - Soft Condensed Matter [SPI.MECA.SOLID]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Solid mechanics [physics.class-ph] Strain gradient 01 natural sciences Surface tension 0103 physical sciences 010306 general physics General Engineering Dimensional modeling Physics - Applied Physics Mechanics 021001 nanoscience & nanotechnology elasto-capillarity Nonlinear system asymptotic analysis [SPI.MECA.STRU]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Structural mechanics [physics.class-ph] mechanical engineering Soft Condensed Matter (cond-mat.soft) 0210 nano-technology bifurcations Elasto-capillarity Necking |
Zdroj: | Proceedings of the Royal Society of London. Series A, Mathematical and physical sciences Proceedings of the Royal Society of London. Series A, Mathematical and physical sciences, Royal Society, The, 2020, 476 (2240), pp.20200337. ⟨10.1098/rspa.2020.0337⟩ |
ISSN: | 0950-1207 |
DOI: | 10.1098/rspa.2020.0337⟩ |
Popis: | We derive a nonlinear one-dimensional (1d) strain gradient model predicting the necking of soft elastic cylinders driven by surface tension, starting from three-dimensional (3d) finite-strain elasticity. It is asymptotically correct: the microscopic displacement is identified by an energy method. The 1d model can predict the bifurcations occurring in the solutions of the 3d elasticity problem when the surface tension is increased, leading to a localization phenomenon akin to phase separation. Comparisons with finite-element simulations reveal that the 1d model resolves the interface separating two phases accurately, including well into the localized regime, and that it has a vastly larger domain of validity than 1d models proposed so far. |
Databáze: | OpenAIRE |
Externí odkaz: |