A CRISPR-based nucleic acid detection platform (CRISPR-CPA): Application for detection of Nocardia farcinica

Autor: Xiaotong Qiu, Shuai Xu, Xueping Liu, Lu Han, Bing Zhao, Yanlin Che, Lichao Han, Xuexin Hou, Dan Li, Yuan Yue, Shenglin Chen, Yutong Kang, Lina Sun, Zhenjun Li
Rok vydání: 2021
Předmět:
Zdroj: Journal of applied microbiologyREFERENCES. 132(5)
ISSN: 1365-2672
Popis: Aims To establish a CRISPR-based nucleic acid detection platform and apply it to the detection of Nocardia farcinica. Methods and Results A CRISPR-based nucleic acid detection platform, termed CRISPR-CPA (CRISPR/Cas12a combined with PCR amplification), which employed PCR for pre-amplification of target sequences and CRISPR-Cas12a-based detection for decoding of the PCR amplicons, was developed. To demonstrate its feasibility, CRISPR-CPA was applied to the detection of N. farcinica. A pair of PCR primers and a crRNA, which targeting the conservative and specific part of gyrA of N. farcinica reference strain IFM 10152, were designed according to the principle of CRISPR-CPA. The whole detection process of N. farcinica CRISPR-CPA assay, including sample pre-treatment and DNA extraction (~20 min), PCR pre-amplification (60 min), CRISPR-based detection (10 min), can be completed within 90 min. A total of 62 isolates were used to evaluate the specificity of N. farcinica CRISPR-CPA assay. Clinical specimens were employed to determine the feasibility of the method in practical application. The limit of detection of the N. farcinica CRISPR-CPA assay is 1 pg DNA per reaction in pure cultures and 105 CFU/ml in sputum specimens, which is similar with culture but significantly more timesaving. Conclusions The N. farcinica CRISPR-CPA assay is an economic and specific method to detect N. farcinica and provides a high-efficiency tool for screening of pathogens especially of some hard-to-culture and slow-growth infectious agents. Significance and Impact of the Study In CRISPR-CPA system, the PCR primers are engineered with a protospacer adjacent motif (PAM) site of Cas12a effector and an additional base A was added at the 5′ end of the engineered PCR primer for protecting PAM site, thus the CRISPR-CPA can detect any sequence. Also, we applied CRISPR-CPA to rapidly detect N. farcinica, which is slow-growing bacteria and is firstly detected by a CRISPR-based method.
Databáze: OpenAIRE