Modulation of Wind Work by Oceanic Current Interaction with the Atmosphere
Autor: | Serena Illig, Alex Hall, James C. McWilliams, Lionel Renault, Alexander F. Shchepetkin, M. Jeroen Molemaker, Florian Lemarié, Dudley B. Chelton |
---|---|
Přispěvatelé: | Institute of Geophysics and Planetary Physics [Los Angeles] (IGPP), University of California [Los Angeles] (UCLA), University of California-University of California, Mathematics and computing applied to oceanic and atmospheric flows (AIRSEA), Inria Grenoble - Rhône-Alpes, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Laboratoire Jean Kuntzmann (LJK ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Centre National de la Recherche Scientifique (CNRS), College of Earth, Ocean and Atmospheric Sciences [Corvallis] (CEOAS), Oregon State University (OSU), Laboratoire d'études en Géophysique et océanographie spatiales (LEGOS), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), University of California (UC)-University of California (UC), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Department of Oceanography, Faculty of Science |
Rok vydání: | 2016 |
Předmět: |
010504 meteorology & atmospheric sciences
Meteorology Oceanography 01 natural sciences Article Physics::Geophysics Ocean dynamics Geostrophic current Circulation/ Dynamics Energy transformation Mesoscale processes Physics::Atmospheric and Oceanic Physics 0105 earth and related environmental sciences [SDU.OCEAN]Sciences of the Universe [physics]/Ocean Atmosphere Atmosphere-ocean interaction 010505 oceanography Surface stress Upwelling/downwelling Vorticity Boundary current Boundary currents Eddy 13. Climate action Environmental science Upwelling Eddies |
Zdroj: | Journal of Physical Oceanography Journal of Physical Oceanography, American Meteorological Society, 2016, 46 (6), pp.1685-1704. ⟨10.1175/JPO-D-15-0232.1⟩ Journal of Physical Oceanography, 2016, 46 (6), pp.1685-1704. ⟨10.1175/JPO-D-15-0232.1⟩ |
ISSN: | 1520-0485 0022-3670 |
DOI: | 10.1175/jpo-d-15-0232.1 |
Popis: | In this study, uncoupled and coupled ocean–atmosphere simulations are carried out for the California Upwelling System to assess the dynamic ocean–atmosphere interactions, namely, the ocean surface current feedback to the atmosphere. The authors show the current feedback, by modulating the energy transfer from the atmosphere to the ocean, controls the oceanic eddy kinetic energy (EKE). For the first time, it is demonstrated that the current feedback has an effect on the surface stress and a counteracting effect on the wind itself. The current feedback acts as an oceanic eddy killer, reducing by half the surface EKE, and by 27% the depth-integrated EKE. On one hand, it reduces the coastal generation of eddies by weakening the surface stress and hence the nearshore supply of positive wind work (i.e., the work done by the wind on the ocean). On the other hand, by inducing a surface stress curl opposite to the current vorticity, it deflects energy from the geostrophic current into the atmosphere and dampens eddies. The wind response counteracts the surface stress response. It partly reenergizes the ocean in the coastal region and decreases the offshore return of energy to the atmosphere. Eddy statistics confirm the current feedback dampens the eddies and reduces their lifetime, improving the realism of the simulation. Finally, the authors propose an additional energy element in the Lorenz diagram of energy conversion: namely, the current-induced transfer of energy from the ocean to the atmosphere at the eddy scale. |
Databáze: | OpenAIRE |
Externí odkaz: |