α-Tubulin detyrosination impairs mitotic error correction by suppressing MCAK centromeric activity

Autor: Helder Maiato, Joana T. Lima, Claudia Guasch Boldú, Jorge G Ferreira, Carolina Lemos, António J. Pereira, Bernardo Orr, Marin Barisic, Girish Rajendraprasad, Luísa T. Ferreira
Rok vydání: 2020
Předmět:
Zdroj: Journal of Cell Biology
The Journal of Cell Biology
Ferreira, L T, Orr, B, Rajendraprasad, G, Pereira, A J, Lemos, C, Lima, J T, Guasch Boldú, C, Ferreira, J G, Barisic, M & Maiato, H 2020, ' α-Tubulin detyrosination impairs mitotic error correction by suppressing MCAK centromeric activity ', The Journal of Cell Biology, vol. 219, no. 4, e201910064 . https://doi.org/10.1083/jcb.201910064
ISSN: 0021-9525
DOI: 10.1083/jcb.201910064
Popis: Detyrosination is a frequent posttranslational modification of long-lived microtubules that inhibits microtubule depolymerase activity in vitro. Ferreira et al. combine manipulation of tubulin tyrosine ligase and carboxypeptidase (Vasohibins-SVBP) activities with state-of-the-art microscopy in human cells to show that α-tubulin detyrosination allows centromeric MCAK to discriminate between correct and incorrect kinetochore–microtubule attachments and ensure mitotic fidelity.
Incorrect kinetochore–microtubule attachments during mitosis can lead to chromosomal instability, a hallmark of human cancers. Mitotic error correction relies on the kinesin-13 MCAK, a microtubule depolymerase whose activity in vitro is suppressed by α-tubulin detyrosination—a posttranslational modification enriched on long-lived microtubules. However, whether and how MCAK activity required for mitotic error correction is regulated by α-tubulin detyrosination remains unknown. Here we found that detyrosinated α-tubulin accumulates on correct, more stable, kinetochore–microtubule attachments. Experimental manipulation of tubulin tyrosine ligase (TTL) or carboxypeptidase (Vasohibins-SVBP) activities to constitutively increase α-tubulin detyrosination near kinetochores compromised efficient error correction, without affecting overall kinetochore microtubule stability. Rescue experiments indicate that MCAK centromeric activity was required and sufficient to correct the mitotic errors caused by excessive α-tubulin detyrosination independently of its global impact on microtubule dynamics. Thus, microtubules are not just passive elements during mitotic error correction, and the extent of α-tubulin detyrosination allows centromeric MCAK to discriminate correct vs. incorrect kinetochore–microtubule attachments, thereby promoting mitotic fidelity.
Graphical Abstract
Databáze: OpenAIRE