Strong spin–orbit interaction of photonic skyrmions at the general optical interface

Autor: Luping Du, Peng Shi, Xiaocong Yuan
Rok vydání: 2020
Předmět:
Zdroj: Nanophotonics, Vol 9, Iss 15, Pp 4619-4628 (2020)
ISSN: 2192-8614
2192-8606
Popis: Photonic skyrmions have applications in many areas, including the vectorial and chiral optics, optical manipulation, deep-subwavelength imaging and nanometrology. Much effort has been focused on the experimental characterization of photonic skyrmions. Here, we give an insight into the spin and orbital features of photonic skyrmions constructed by the p-polarized and s-polarized surface waves at an interface with various electric and magnetic properties by analyzing the continuity of chirality, energy flow and momentum densities through the electric and magnetic interface. The continuity of chirality density indicates that the photonic skyrmion has a property of the optical transverse spin. Most importantly, the continuity of energy flow and momentum densities results in four spin–orbit interaction quantities, which indicate the gradient of electric polarizability or permeability governs the spin–orbit interaction of photonic skyrmions and leads to the discontinuity and even the reversal of spin orientation through the optical interface. Our investigations on the spin–orbit properties of photonic skyrmions, which can give rise to the spin-dependent force and topological unidirectional transportation, is thorough and can be extended to other classical wave, such as acoustic and fluid waves. The findings help in understanding the spin–orbit feature of photonic topological texture and in constructing further optical manipulation, sensing, quantum and topological techniques.
Databáze: OpenAIRE