Ideals of Herzog–Northcott type

Autor: Francesc Planas-Vilanova, Liam O'Carroll
Přispěvatelé: Universitat Politècnica de Catalunya. Departament de Matemàtica Aplicada I, Universitat Politècnica de Catalunya. EGSA - Equacions Diferencials, Geometria, Sistemes Dinàmics i de Control, i Aplicacions
Rok vydání: 2011
Předmět:
Pure mathematics
General Mathematics
Prime ideal
Commutative rings
Splitting of prime ideals in Galois extensions
Ideal class group
Anells commutatius
liaison
Àlgebra commutativa
Herzog ideal
Boolean prime ideal theorem
Ascending chain condition on principal ideals
13 Commutative rings and algebras::13A General commutative ring theory [Classificació AMS]
13 Commutative rings and algebras::13H Local rings and semilocal rings [Classificació AMS]
Mathematics
Discrete mathematics
almost complete intersection
13 Commutative rings and algebras::13C Theory of modules and ideals [Classificació AMS]
Mathematics::Commutative Algebra
associative law of multiplicities
Semiprime ring
Matemàtiques i estadística [Àrees temàtiques de la UPC]
Northcott ideal
Fractional ideal
Going up and going down
13 Commutative rings and algebras::13D Homological methods [Classificació AMS]
Zdroj: UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
Recercat. Dipósit de la Recerca de Catalunya
instname
ISSN: 1464-3839
0013-0915
DOI: 10.1017/s0013091509001321
Popis: This paper takes a new look at ideals generated by 2×2 minors of 2×3 matrices whose entries are powers of three elements not necessarily forming a regular sequence. A special case of this is the ideals determining monomial curves in three-dimensional space, which were studied by Herzog. In the broader context studied here, these ideals are identified as Northcott ideals in the sense of Vasconcelos, and so their liaison properties are displayed. It is shown that they are set-theoretically complete intersections, revisiting the work of Bresinsky and of Valla. Even when the three elements are taken to be variables in a polynomial ring in three variables over a field, this point of view gives a larger class of ideals than just the defining ideals of monomial curves. We then characterize when the ideals in this larger class are prime, we show that they are usually radical and, using the theory of multiplicities, we give upper bounds on the number of their minimal prime ideals, one of these primes being a uniquely determined prime ideal of definition of a monomial curve. Finally, we provide examples of characteristic-dependent minimal prime and primary structures for these ideals.
Databáze: OpenAIRE