A Lightweight Epistemic Logic and its Application to Planning
Autor: | Pierre Régnier, Faustine Maffre, Frédéric Maris, Andreas Herzig, Elise Perrotin, Martin C. Cooper |
---|---|
Přispěvatelé: | Artificial and Natural Intelligence Toulouse Institute (ANITI), Argumentation, Décision, Raisonnement, Incertitude et Apprentissage (IRIT-ADRIA), Institut de recherche en informatique de Toulouse (IRIT), Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées, Université Toulouse III - Paul Sabatier (UT3), Logique, Interaction, Langue et Calcul (IRIT-LILaC), Centre National de la Recherche Scientifique (CNRS), ANR-19-P3IA-0004,ANITI,Artificial and Natural Intelligence Toulouse Institute(2019), European Project: 952215,TAILOR(2020), Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT)-Université de Toulouse (UT)-Université Toulouse - Jean Jaurès (UT2J), Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Toulouse Mind & Brain Institut (TMBI), Université Toulouse - Jean Jaurès (UT2J), Université de Toulouse (UT)-Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT) |
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
Epistemic planning
Linguistics and Language Common knowledge (logic) Theoretical computer science Computer science 02 engineering and technology [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM] Language and Linguistics [INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI] Negation Epistemic modal logic Artificial Intelligence Simple (abstract algebra) 020204 information systems 0202 electrical engineering electronic engineering information engineering Observability PSPACE [INFO.INFO-SC]Computer Science [cs]/Symbolic Computation [cs.SC] Propositional variable Multiagent planning Gossip problem Satisfiability [MATH.MATH-LO]Mathematics [math]/Logic [math.LO] TheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGES 020201 artificial intelligence & image processing Epistemic logic |
Zdroj: | Mémoires en Sciences de l'Information et de la Communication Hyper Article en Ligne Hal-Diderot ORCID Microsoft Academic Graph HAL Descartes Artificial Intelligence, Elsevier, 2020, 298, pp.103437. ⟨10.1016/j.artint.2020.103437⟩ Artificial Intelligence Artificial Intelligence, 2021, Special issue: SI: Ethics for Autonomous Systems, 298, pp.103437. ⟨10.1016/j.artint.2020.103437⟩ |
ISSN: | 0004-3702 |
Popis: | Edited by Michael Fisher, Sven Koenig and Marija Slavkovik.; International audience; We study multiagent epistemic planning with a simple epistemic logic whose language is a restriction of that of standard epistemic logic. Its formulas are boolean combinations of observability atoms: sequences of ‘knowing whether’ operators followed by propositional variables. This compares favourably with other restricted languages where formulas are boolean combinations of epistemic literals: sequences of ‘knowing that’ epistemic operators and negations followed by propositional variables; or in other terms: epistemic formulas without conjunctions or disjunctions. The reason is that our language enables a richer theory of mind: we can express statements such as “I don’t know whether p, but I know that you know whether p” which are important in communication and more generally in interaction and which cannot be expressed with epistemic literals. Going beyond previous work, we also introduce a ‘common knowledge whether’ operator. We show that satisfiability is nevertheless NP-complete. We then define simple epistemic planning tasks as generalisations of classical planning tasks: action descriptions have sets of observability atoms as add- and delete-lists, initial states are sets of observability atoms, and goals are boolean combinations of observability atoms. We show that simple epistemic planning tasks can be polynomially translated into classical planning tasks. It follows that checking solvability of simple epistemic planning tasks is PSpace-complete. We present some application examples such as the gossip problem and some experimental results and clarify the relationship with Dynamic Epistemic Logic-based planning. |
Databáze: | OpenAIRE |
Externí odkaz: |