Vortex Dynamics Study and Flow Visualization on Aircraft Model with Different Canard Configurations
Autor: | Sutrisno, Febryanto Nugroho, Budi Basuki, Tri Agung Rohmat, Petricius Ginting, Zainuri Anwar, Soeadgihardo Siswantoro, Setyawan Bekti Wibowo |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
Flow visualization
02 engineering and technology lcsh:Thermodynamics vortex dynamics 01 natural sciences 010305 fluids & plasmas 0203 mechanical engineering lcsh:QC310.15-319 0103 physical sciences canard lcsh:QC120-168.85 Fluid Flow and Transfer Processes Physics Wing water tunnel Angle of attack Mechanical Engineering Stall (fluid mechanics) Aerodynamics Mechanics Condensed Matter Physics Vortex Aerodynamic force 020303 mechanical engineering & transports Water tunnel fighter aircraft lcsh:Descriptive and experimental mechanics aerodynamics |
Zdroj: | Fluids, Vol 6, Iss 144, p 144 (2021) Fluids Volume 6 Issue 4 |
ISSN: | 2311-5521 |
Popis: | Canard configuration on fighter planes is essential for regulating flow and the occurrence of vortex interactions on the main wing, one of which is to delay stall. Stall delays are useful when the aircraft is making maneuvering or short-landing. This study observed the effect of canard configuration on various fighter aircraft models. Fighter models represented the different canard configurations, such as Sukhoi SU-30 MKI, Chengdu J-10, and Eurofighter Typhoon. Water tunnels and computational fluid dynamics (CFD) have made it easier to visualize the flow and aerodynamic forces. The results showed that at a low angle of attack (AoA) < 30°, the Chengdu J-10 and Eurofighter models had the highest lift force coefficient (Cl). When at high AoA, Cl’s highest value occurred on the Sukhoi SU-30 model with a value of 1.45 at AoA 50°. Meanwhile, the highest AoA that still had a high Cl value occurred on the Sukhoi SU-30 and Chengdu J-10 aircraft models, namely at AoA 55° with Cl values more than 1.1. The canard position in the upper of the wing would increase the Cl at low AoA, while the parallel canard position could delay the stall. |
Databáze: | OpenAIRE |
Externí odkaz: |