Linearization by means of Linear Implicit Rectangular Descriptions
Autor: | Vadim Azhmyakov, Moises Bonilla, Michel Malabre |
---|---|
Přispěvatelé: | Departamento de Control Automático (CINVESTAV-IPN), Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), UMI-LAFMIA CINVESTAV-CNRS, Centro de Investigacion y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Universidad de Medellin, Commande (Commande), Laboratoire des Sciences du Numérique de Nantes (LS2N), IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-École Centrale de Nantes (ECN)-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique), Université de Nantes (UN)-Université de Nantes (UN)-École Centrale de Nantes (ECN)-Centre National de la Recherche Scientifique (CNRS), Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT) |
Rok vydání: | 2017 |
Předmět: |
0209 industrial biotechnology
[MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS] 02 engineering and technology 16. Peace & justice [SPI.AUTO]Engineering Sciences [physics]/Automatic Algebra [SPI]Engineering Sciences [physics] Algebraic equation Nonlinear system 020901 industrial engineering & automation Control and Systems Engineering Control theory Linearization 0202 electrical engineering electronic engineering information engineering 020201 artificial intelligence & image processing Feedback linearization Representation (mathematics) ComputingMilieux_MISCELLANEOUS State representation Linear control Mathematics |
Zdroj: | 20th IFAC World Congress 20th IFAC World Congress, Jul 2017, Toulouse, France |
ISSN: | 2405-8963 |
DOI: | 10.1016/j.ifacol.2017.08.2361 |
Popis: | This paper discusses a novel implementable approach to an exact linearization procedure based on the implicit systems techniques. The formal procedure we propose includes a specific “splitting” of the nonlinear state representation in two parts that involve a basic rectangular representation and an auxiliary nonlinear algebraic equation. The proposed linear implicit systems description makes it possible to apply the conventional linear control techniques to an initially given sophisticated nonlinear dynamic model. |
Databáze: | OpenAIRE |
Externí odkaz: |